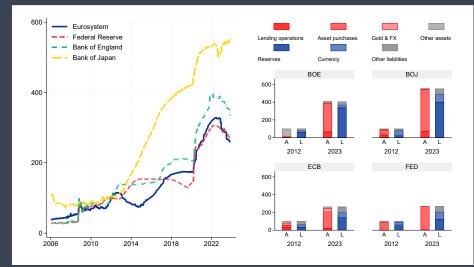
Central Bank Balance-Sheet Policies: A Comparative Statics Approach


8th ChaMP Workshop

by Saki Bigio (UCLA, NBER), Tobias Linzert (ECB), Fernando Mendo (PUC Rio), Julian Schumacher (ECB), Dominik Thaler (ECB) on December 11, 2025

Introduction

> Large Balance Sheets

> Motivation

"The problem with QE is it works in practice, but it doesn't work in theory."

Ben Bernanke

> Motivation

"The problem with QE is it works in practice, but it doesn't work in theory."

Ben Bernanke

- * In fact, various mechanisms:
 - * risk concentration/financial constraints (Gertler-Karadi, Vayanos-Vila)
 - * liquidity-premia (Bianchi-Bigio)
 - * fiscal consequences (Benigno-Benigno)
 - * signalling (Eggertson et al.)

> Motivation

"The problem with QE is it works in practice, but it doesn't work in theory." Ben Bernanke

- * In fact, various mechanisms:
 - * risk concentration/financial constraints (Gertler-Karadi, Vayanos-Vila)
 - * liquidity-premia (Bianchi-Bigio)
 - * fiscal consequences (Benigno-Benigno)
 - * signalling (Eggertson et al.)
- * Challenge: understand relevance of each channel

> Goal

- * Interest rate:
 - * well established framework: New-Keynesian model
 - * key statistics:
 - * intertemporal elasticity of substitution
 - * slope of Phillips curve
 - * MPC distribution (HA version)
 - * but, framework silent about QE

> Goal

- * Interest rate:
 - * well established framework: New-Keynesian model
 - * key statistics:
 - * intertemporal elasticity of substitution
 - * slope of Phillips curve
 - * MPC distribution (HA version)
 - * but, framework silent about QE

- * Goal: counterpart for QE
 - * produce sufficient statistics that summarize the relevance of each channel
 - * quantitative assessment
 - * focus: comparative-statics analysis (shut down feedback effects from expectations about future)

> Questions

- * When does CB balance-sheet size matter?
 - * stimulate credit?
 - * translate to inflation?

> Questions

- * When does CB balance-sheet size matter?
 - * stimulate credit?
 - * translate to inflation?
- * Which statistics govern the strength of these effects?
 - * elasticities of funding sources or investment opportunities for banks?
 - * elasticities of premiums generated by risk, liquidity or regulation?

- * Different from DSGE modeling
 - * sacrifice dynamics for static interactions
 - * transparent

- * Different from DSGE modeling
 - * sacrifice dynamics for static interactions
 - * transparent
- * Identify key sufficient statistics:
 - ∗ sufficient statistics ⇒ key elasticities ⇒ strength of channels
 - * identify source of non-neutrality

- Different from DSGE modeling
 - * sacrifice dynamics for static interactions
 - * transparent
- * Identify key sufficient statistics:
 - * sufficient statistics \Longrightarrow key elasticities \Longrightarrow strength of channels
 - * identify source of non-neutrality
- * Quantitative goal
 - * estimate/calibrate elasticities
 - * counterfactuals w/o solving equilibrium

- Different from DSGE modeling
 - * sacrifice dynamics for static interactions
 - * transparent
- * Identify key sufficient statistics:
 - * sufficient statistics \Longrightarrow key elasticities \Longrightarrow strength of channels
 - * identify source of non-neutrality
- Quantitative goal
 - * estimate/calibrate elasticities
 - * counterfactuals w/o solving equilibrium
- Common outside macro-finance
 - * taxation, international trade
 - * heterogeneous agents, welfare analysis

Framework

- * Environment (non-bank block
- * Banks Problem
- " Danks I lobien

Framework

- * Environment (non-bank block)
- st Banks Problem
- * Equilibrium

> Timing

```
\ast two-period: t=0,1
```

> Timing

- * two-period: t = 0, 1
- * focus on static t = 0 effects
 - * anchored inflation expectations

> Notation

```
* i nominal rates (between t = 0 and t = 1)
```

* R real rates:

> Notation

- * i nominal rates (between t = 0 and t = 1)
- * R real rates:

$$R^{\mathsf{x}} = \frac{1 + \dot{r}^{\mathsf{x}}}{1 + \pi}$$

- * Quantities:
 - * lower-case: real
 - * upper case: nominal

> Non Banking: Asset Demand System

- * critical: segmentation
 - * microfounded
 - * asset-demand systems (think Koijen-Moto-Gabaix)

> Non Banking: Asset Demand System

- * critical: segmentation
 - * microfounded
 - * asset-demand systems (think Koijen-Moto-Gabaix)

Demand System

Deposit supply:

$$d(R^d)$$

Loan demand:

$$\ell\left(ar{R}^{\ell},P
ight)$$

- * Key elasticities:
 - * $\epsilon^d>0$: captures external funding elasticity for banks
 - * $-\epsilon_R^\ell < 0$: captures elasticity of investment schedule for banks
 - * $\epsilon_P^{\ell} > 0$: summarizes sticky wages + payroll financing channel

> Central Bank

* Standard Instrument (corridor for interest rate):

$$i^m \to R^m \equiv \frac{1+i^m}{1+\pi}, \quad i^{dw} \to R^{dw} \equiv \frac{1+i^{dw}}{1+\pi}$$

* Central Bank Balance sheet

$$\frac{L^g}{P} = \frac{M}{P} + \overbrace{e^g}^{=0}$$

- * Income statement (t = 1)
 - * return on portfolio (risky) | discount-window loans interest paid on reserves
 ⇒ real transfers to households / banks
 - * nominal transfers chosen to meet inflation target
 - * Key: fraction of transfers going to households $\varphi \in [0,1]$ \Rightarrow governs risk-absorption channel
- * QE (policy rates fixed):

$$dM = dL^g$$

> Remarks

* $\frac{dP}{P}$ is not expected inflation (tomorrow):

$$\frac{P'}{P} = (1+\pi) \to d\left(\frac{P'}{P}\right) = 0.$$

* $\frac{dP}{P}$ is counterfactual surprise in price (today)

Framework

- * Environment (non-bank block
- * Banks Problem
- . Fanilihnium

> Bank's Problem

* Bank maximizes:

$$\max_{\{\ell^b, m^b, d^b, \textit{div}_0\}} \textit{u}(\textit{div}_0) - \underbrace{\beta \Lambda \left(\frac{\textit{d}^b - m^b}{\ell^b}\right) \ell^b}_{\text{Leverage cost}} + \beta \mathbb{CE}(\textit{div}_1(\omega, \textit{z}))$$

budget:

$$div_0 + \ell^b + m = \underbrace{e^b(P)}_{ ext{nominal contracts}} + d$$

$$div_1(\omega, z) = \underbrace{R^\ell(z)\ell^b + R^m m^b - R^d d^b}_{ ext{Expected Portfolio Returns}} + \underbrace{\chi(s(\omega)|\theta)}_{ ext{Settlement Return}} + \frac{T_1^b(z)}{P(1+\pi)}$$

- st Uncertainty: z return on loan portfolio (aggregate), ω liquidity risk (idiosyncratic)
- \ast Liquidity shocks: depositors transfer funds from one bank to another.

> Bank's Problem | Liquidity risk

* The reserve surplus after the deposit transfers:

$$s = \begin{cases} m^b - \delta d^b & \text{with prob. 0.5} \\ m^b & \text{with prob. 0.5} \end{cases}$$

* Endogenous liquidity cost

$$\chi(s;\theta) = \begin{cases} \chi^{-}(\theta) \cdot s & \text{if } s \leq 0 \\ \chi^{+}(\theta) \cdot s & \text{if } s > 0 \end{cases}$$

* Tightness (interbank)

$$\theta = -\underbrace{\frac{M/P - \delta d}{M/P}}_{\text{surplus}}$$

* $\chi(s;\theta)$ related to tightness: $R^{int}(\theta)$ endogenous interbank rate, $\psi^{-}(\theta)$ discount-window access.

> Bank's Problem | Optimal decisions

* FOCs

where $extit{R}^f \equiv eta^{-1} u' \left(extit{div}_0^i
ight)$ and $extit{k}^i \equiv rac{ extit{d}^{b,i} - extit{m}^{b,i}}{\ell^{b,i}}$.

Framework

- * Environment (non-bank block
- st Banks Problem
- * Equilibrium

> Market clearing

* Reserves

$$\int m^{b,i} di = \frac{M}{P}$$

* Loans

$$\ell^{\mathsf{g}} + \int \ell^{\mathsf{b},\mathsf{i}} \mathsf{d}\mathsf{i} = \ell(\bar{R}^{\ell},P)$$

* Deposits

$$\int d^{b,i}di = d(R^d)$$

> Equilibrium characterization

Given policy decisions for $\{i^m, i^{dw}, \pi, \varphi, M\}$, the following system determines aggregate loans ℓ , deposits d, price level P

$$\bar{R}^{\ell}(\ell, P) = R^{f} + \gamma \mathbb{V}\left(R^{\ell}\right) \left(\ell - \varphi \frac{L^{g}}{P}\right) - \mathcal{B}^{s}(k)$$

$$R^{m} = R^{f} - \mathcal{L}^{m}(\theta) - \mathcal{B}^{d}(k)$$

$$R^{d}(d) = R^{f} - \mathcal{L}^{d}(\theta) - \mathcal{B}^{d}(k)$$

where central bank purchases are

$$M = L^g$$

and

$$k\equiv rac{d-rac{M}{P}}{\ell-rac{L^{\mathcal{E}}}{P}}$$
 is leverage, $heta\equiv -rac{M/P-\delta d}{M/P}$ is market tightness,

 $ar{R}^{\ell}\left(\ell,P
ight)$ is defined by firms' loan demand, $R^{d}(d)$ is defined by the representative household's deposit supply, $R^{f}\equiv\beta^{-1}u'\left(div_{0}\right),\ \mathbb{V}\left(R^{\ell}\right)=\sigma^{2}\left(ar{R}^{\ell}\left(\ell,P\right)\right)^{2}$, aggregate dividends are $div_{0}(P,d,\ell)\equiv d-\ell+e(P)$.

> Differential system

QE Effects

Consider QE $dL^g = dM$. Then

$$=$$
 d M . Then $A\left(\Theta,\Omega
ight) imesegin{bmatrix} rac{\mathrm{d}d}{d} \ rac{\mathrm{d}P}{P} \ rac{\mathrm{d}\ell}{\ell} \end{bmatrix} = \mathcal{D}\left(\Theta,\Omega
ight) imesrac{\mathrm{d}M}{M}.$

Replace budget constraints, take differentials

> Key Statistics

* Elasticity Set Θ :

> Key Statistics

- * Elasticity Set Θ :
 - 1. Funding and investment elasticities
 - * Deposit funding ϵ^d
 - * Equity funding ψ
 - * Firms loan demand ϵ_R^ℓ

Key Statistics

- * Elasticity Set Θ :
 - 1. Funding and investment elasticities
 - * Deposit funding ϵ^d
 - * Equity funding ψ
 - * Firms loan demand ϵ_R^ℓ
 - 2. Money demand
 - * Liquidity premiums to market tightness $\epsilon_{ heta}^{\mathcal{L}^{m}}$, $\epsilon_{ heta}^{\mathcal{L}^{d}}$

> Key Statistics

- * Elasticity Set Θ :
 - 1. Funding and investment elasticities
 - * Deposit funding ϵ^d
 - * Equity funding ψ
 - * Firms loan demand ϵ_{P}^{ℓ}
 - 2. Money demand
 - * Liquidity premiums to market tightness $\epsilon_{ heta}^{\mathcal{L}^{m}}$, $\epsilon_{ heta}^{\mathcal{L}^{d}}$
 - 3. Risk
 - * Risk aversion γ
 - * QE risk-absorption φ

> Key Statistics

- * Elasticity Set Θ :
 - 1. Funding and investment elasticities
 - * Deposit funding ϵ^d
 - ∗ Equity funding ψ
 - * Firms loan demand ϵ_{p}^{ℓ}
 - 2. Money demand
 - * Liquidity premiums to market tightness $\epsilon_{ heta}^{\mathcal{L}^m}$, $\epsilon_{ heta}^{\mathcal{L}^d}$
 - 3. Risk
 - ∗ Risk aversion γ
 - * QE risk-absorption φ
 - 4. Leverage
 - * Leverage premiums to leverage ratio $\epsilon_k^{\mathcal{B}^{\mathfrak{d}}}$, $\epsilon_k^{\mathcal{B}^{\mathfrak{d}}}$

> Key Statistics

- * Elasticity Set Θ :
 - 1. Funding and investment elasticities
 - * Deposit funding ϵ^d
 - * Equity funding ψ
 - * Firms loan demand ϵ_R^ℓ
 - 2. Money demand
 - * Liquidity premiums to market tightness $\epsilon_{ heta}^{\mathcal{L}^m}$, $\epsilon_{ heta}^{\mathcal{L}^d}$
 - 3. Risk
 - * Risk aversion γ
 - * QE risk-absorption φ
 - 4. Leverage
 - * Leverage premiums to leverage ratio $\epsilon_k^{\mathcal{B}^a}$, $\epsilon_k^{\mathcal{B}^d}$
 - 5. nominal rigidities
 - * Sticky wages ϵ_P^ℓ
 - * Nominal financial contracts (exposed to inflation surprises) ϵ_{P}^{e}

> Key Statistics

- st Elasticity Set Θ :
 - 1. Funding and investment elasticities
 - * Deposit funding ϵ^d
 - * Equity funding ψ
 - * Firms loan demand ϵ_{P}^{ℓ}
 - 2. Money demand
 - * Liquidity premiums to market tightness $\epsilon_{\theta}^{\mathcal{L}^m}$, $\epsilon_{\theta}^{\mathcal{L}^d}$
 - 3. Risk
 - * Risk aversion γ
 - * QE risk-absorption φ
 - 4. Leverage
 - * Leverage premiums to leverage ratio $\epsilon_k^{\mathcal{B}^a}$, $\epsilon_k^{\mathcal{B}^d}$
 - 5. nominal rigidities
 - * Sticky wages ϵ_p^ℓ
 - * Nominal financial contracts (exposed to inflation surprises) ϵ_{P}^{e}
- st Key Financial ratios and returns/ premiums Ω :

$$\ell, \ell^{\mathsf{g}}, \mathsf{m}, \mathsf{d}, \mathsf{e}, \mathsf{div}$$

$$R^{\ell}, R^{d}, R^{m}, \mathcal{L}^{m}, \mathcal{L}^{d}, \mathbb{V}(R^{\ell}), \mathcal{B}^{a}, \mathcal{B}^{d}$$

> Financial frictions and nominal rigidities

Neutrality: no financial frictions

Absent financial frictions: - no leverage constraint $\frac{B^*}{k} = \frac{B^*}{k} = 0$

- satiation in the interbank market $\epsilon_{\theta}^{L^{m}} = \epsilon_{\theta}^{L^{m}} = 0$
- no risk absorption of government purchases arphi=0

Then, asset purchases *** are neutral. Moreover, the price level does not respond to OMO.

Neutrality: no nominal rigidities

Absent nominal rigidities:

- no sticky wages $\epsilon_p^{\ell} = 0$
- real financial contracts $\epsilon_p^e = 0$

Then, asset purchases dL^{α} are neutral. the price level adjusts proportionally to the change in reserves, i.e., dP/P = dM/M.

> Funding and investment elasticities

Neutrality: perfectly inelastic funding /investment

Under perfectly inelastic funding (deposits, equity) and investment (loans) elasticities

$$\psi, \epsilon^d, \epsilon^\ell_R \to 0$$

Asset purchases dLE are neutral.

Neutrality: perfectly elastic funding /investment

Under perfectly inelastic funding (deposits, equity) and investment (loans) elasticities

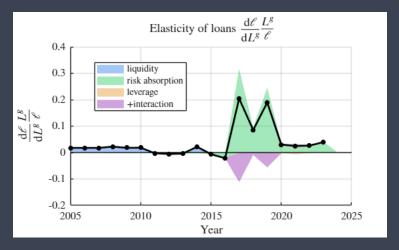
$$\psi, \epsilon^d, \epsilon^\ell_R \to \infty$$

Asset purchases dL^e are neutral.

> Summary of real effects

Real Effects over aggregate credit

		Nominal Rigidity		
		None	Nominal assets	Sticky wages
	None	N	N	N
Financial	Liquidity friction	N	(-)	(+)
Friction	Risk absorption	N	(+)	N
	Balance sheet constraint	N	(-)	(+)


- * Elasticities govern strengths when operation not neutral
- * Signs under additional assumptions (and finite investment / funding elasticities)

Quantitative exercises

> Work in progress

- Measure the key statistics (ECB data)
- * Time series of potential effects of QE at different points in time
- * Decomposition of relative importance of each channel
- \ast Quantitative analysis of how the strength of each channel depends elasticities

> Work in progress

Example quantitative exercise

* Liquidity channel absent when interbank market flooded with reserves

Conclusion

> Conclusion

- * Presented a framework to think about unconventional MP
 - * framework focused on short-run comparative statics
 - * flexible to accommodate various considerations

> Conclusion

- * Presented a framework to think about unconventional MP
 - * framework focused on short-run comparative statics
 - * flexible to accommodate various considerations
- End goal
 - * identify key-elasticities
 - * estimate and build a tool to evaluate QE