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Abstract

This paper studies oil market and other macroeconomic shocks in a structural vector au-

toregression with sign restrictions. It introduces a new indicator for oil demand, and uniquely,

performs a sign restriction set-up with a penalty function approach in an oil market vector au-

toregression. The model also allows for macroeconomic shocks in the US. The results underline

the importance of the source of an oil shock for its macroeconomic consequences. Oil supply

shocks have been less relevant in driving real oil prices, and had less of an effect on US inflation

than demand shocks. Overall, the effects of oil shocks on US real activity have been relatively

limited, as also highlighted by a counterfactual experiment of recent oil market developments.

JEL No.: C01, C32, E32

Keywords: oil demand shocks, oil supply shocks, business cycle, Bayesian econometrics
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Non-technical summary

In recent literature on the effects of oil shocks on the macroeconomy, it has been acknowledged

that it is not suffi cient to study merely the effects of oil price shocks in isolation of other shocks

affecting the economy. Therefore, models that can take into account the interdependencies

of various key macroeconomic variables have gained in popularity. One typical class of these

kinds of models offering a simple, yet effective way of studying the shocks is structural vector

autoregression (SVAR) models. Some recent studies have used traditional recursive structures

to identify oil demand and supply shocks, while many studies have also used sign restrictions.

The latter typically means setting sign restrictions on some of the impulse responses based on

economic theory, and then simulating the model with different simulation methods.

In the oil shock literature, the definition of supply and demand shocks is not necessarily

clear-cut, and there have been a variety of methods used to elicit the effects of the different oil

shocks. The weakness of VARs is that they are not structural models grounded precisely on

macroeconomic theory, so it is diffi cult to prioritise between different methodologies. However,

it does seem obvious that the more one can move towards identifying the typical shocks usually

found in traditional business-cycle VARs, the more realistic one can hope the answers to be.

Furthermore, defining an indicator for the demand pressures in the oil markets is a challenge,

and something may be gained by exploring new kinds of demand indicators.

The current paper attempts to contribute to the ongoing discussion on the macroeconomic

effects of oil shocks in the following ways. First, it introduces a new six-variable oil market VAR,

including a new indicator for measuring oil demand in traditional oil market VARs. Second,

the model takes into account demand and supply as well as monetary policy shocks in the US

economy, thus allowing for a more realistic setting to study the effects of oil market shocks.

Third, and uniquely, the paper studies a more comprehensive set of identification restrictions

for the different oil shocks than has previously been conventional in the literature. Namely,

the current paper uses a so-called penalty function approach to impose sign restrictions in the

model. Finally, the paper introduces a counterfactual experiment to illustrate how the model

can be used to draw conclusions on recent developments in oil supply and prices.

The results of the paper largely confirm those of recent literature, but with some interesting

exceptions and additions. My results suggest that the US real economic activity responds dif-

ferently to different oil shocks, namely, positive oil demand shocks have been associated with a

positive effect on US GDP, while oil supply and expectational shocks have had a negative effect.

Overall, oil shocks have not been very significant drivers of economic activity in the US, which

has been more dependent on domestic macroeconomic shocks. In addition, the counterfactual

experiment suggests that an increase in oil supply would not have been effective in avoiding

the recession of the late 2000’s in the US. Hence, there is little support in my results for the
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claim made in previous literature that monetary policy responses to oil shocks have caused large

macroeconomic fluctuations in the US, or for the assertion that oil shocks were a major reason

for the recession in the US in the late 2000’s.

In line with most of the recent literature, I also find the response of the oil price to be

dependent on the kind of shock that hits the oil market. Demand shocks have had larger and

more persistent effects on the real oil price than supply shocks, although based on the results

in the current paper, the relevance of speculation as an important driver of oil prices cannot be

ruled out either. On the other hand, general macroeconomic shocks in the US have had a less

persistent effect on the oil price. This reflects not only the fact that domestic shocks in the US

economy aren’t necessarily large enough to move the global oil market, but also the fact that

forces moving the oil price can usually be traced back to the fundamentals of demand and supply

in the oil market.

The objective of the current study is not to provide definitive answers on the macroeconomic

effects of oil shocks, or on how to measure oil demand. Rather, it offers a slightly different way

of studying these shocks and demand pressures than has been used in the recent literature, and

largely confirms the results of the emerging consensus. It also underlines the fact that different

modelling and sign restriction strategies can have a significant influence on the inference of the

results. However, all in all, a deeper understanding of the nature and definition of shocks hitting

the oil market, and their policy implications for oil-importing economies is required. Clearly, as

suggested by most recent studies on the macroeconomic effects oil shocks, modelling oil price

shocks without taking into account the source of the shock is not a viable avenue.
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1 Introduction

In recent literature on the effects of oil shocks on the macroeconomy, it has been acknowledged

that it is not suffi cient to study merely the effects of oil price shocks in isolation of other shocks

affecting the economy. Therefore, models that can take into account the interdependencies

of various key macroeconomic variables have gained in popularity. One typical class of these

kinds of models offering a simple, yet effective way of studying the shocks is structural vector

autoregression (SVAR) models. One of the seminal papers of recent literature of this branch is

Kilian (2009), which introduces a recursively structured three-variable oil market SVAR. The

paper identifies the model by assuming that oil supply does not respond to innovations in oil

demand during the same month, and by inserting the identified shocks into separate models

explaining US GDP growth and inflation, concludes that these effects depend crucially on what

kind of a shock we are dealing with. In particular, demand shocks that increase oil prices can

have positive effects on US GDP. Furthermore, the paper concludes that empirical monetary

VARs linking the response of monetary policy to oil shocks, like the one introduced by Bernanke

et. al. (1997) are fundamentally misspecified, because they assume the same response to oil

price innovations regardless of the composition of the shock. Other authors, like Hamilton and

Herrera (2004), Kilian (2010) and Kilian and Lewis (2010) have also challenged the findings of

Bernanke et. al. (1997). Hence, the claim in Bernanke et. al. (1997) that considerable aggregate

macroeconomic fluctuations have been caused by monetary policy responses to oil shocks, is open

to debate.

Instead of applying recursive structures to identify the VAR models, many studies have also

used sign restrictions. This typically means imposing sign restrictions on some of the impulse

responses based on economic theory, and then simulating the model with, for example, Monte

Carlo simulation methods, as suggested by Uhlig (2005) and Mountford and Uhlig (2009). For

example, Kilian and Murphy (2009) apply sign restrictions to the recursive basic oil market

model introduced by Kilian (2009), and hence try to overcome the slightly implausible recursive

structure of the latter paper. By using sign restrictions as well as some restrictions on short-

term supply elasticity, the authors show that the results of Kilian (2009) are mostly valid, and

that the real price of oil has been largely driven by demand rather than supply shocks. Kilian

and Murphy (2011) further develop the basic oil market model to take into account speculation

(measured with data on oil stocks) in a sign-restriction framework, but still conclude that the

fluctuations seen in the real price of oil during the past 10 years or so were caused mainly by

demand rather than supply or speculation shocks. Lippi and Nobili (2009) find that the effects

of oil shocks on the main macroeconomic variables depend on the source of shock, with a positive

oil demand shock being associated with an increase in economic activity in the US.

Some authors have used more advanced VAR techniques in eliciting the effects of different

kinds of oil shocks. For example, Aastveit (2009) uses a data-rich environment in a recursively
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identified factor-augmented VAR (FAVAR) approach to conclude that oil demand shocks are

more important than supply shocks as a driving force behind several macroeconomic variables.

Furthermore, he also finds that monetary policy in the US reacts differently to different kinds of

oil shocks. Baumeister and Peersman (2011), using a time-varying VAR framework, find a large

role for oil demand shocks in real oil price variability, and this role has increased over time.

However, despite the abundance of studies in the field, none of the models mentioned above is

without its flaws. As the above discussion indicates, the definition of supply and demand shocks

is not necessarily clear-cut, and there have been a variety of methods used to elicit the effects of

the different oil shocks. Obviously, the weakness of VARs is that they are not structural models

grounded precisely on macroeconomic theory, so it is diffi cult to prioritise between different

methodologies. However, it does seem obvious that the more one can move towards identifying

the typical shocks usually found in traditional business-cycle VARs, the more realistic one can

hope the answers to be. Also, one additional weakness of some of the models used in the previous

literature is the sign restriction methodology, which, as shown by Fry and Pagan (2007), suffers

from certain theoretical drawbacks. Hence, it would be useful to study oil market VARs with

different sign restriction strategies. Furthermore, defining an indicator for the demand pressures

in the oil market is a challenge, which seems to have been met in the recent literature by the

indicator introduced by Kilian (2009). Nevertheless, something may be gained by exploring other

kinds of demand indicators.

The current paper attempts to contribute to the ongoing discussion on the macroeconomic

effects of oil shocks in the following ways. First, it introduces a new six-variable oil market VAR,

including a new indicator for measuring oil demand in traditional oil market VARs. Second,

the model takes into account demand/supply and monetary policy shocks in the US economy,

thus allowing for a more realistic setting to study the effects of oil market shocks. Third, and

uniquely, the paper studies a more comprehensive set of identification restrictions for the different

oil shocks than has previously been conventional in the literature. Namely, the current paper

uses a so-called penalty function approach, originally introduced by Uhlig (2005), to impose sign

restrictions in the model. Finally, the paper introduces a counterfactual experiment to illustrate

how the model can be used to draw conclusions on recent developments in oil supply and prices.

The results of the paper largely confirm those of recent literature, but with some interesting

exceptions and additions. As has been concluded by many previous studies, I also find that

the source of the oil shock matters for its macroeconomic consequences. In particular, supply

shocks tend to be more deflationary than demand shocks, and oil demand shocks tend to have a

more persistent effect on the oil price. Overall, oil shocks have not been very significant drivers

of economic activity in the US, which has been more dependent on domestic macroeconomic

shocks. In addition, the counterfactual experiment suggests that an increase in oil supply would

not have been effective in avoiding the recession of the late 2000’s in the US.

The paper is organised as follows. Section 2 introduces the model, data as well as the details
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of the oil demand indicator. Section 3 deals with the sign restriction strategy, and section 4 with

the results. Section 5 describes the counterfactual experiment. Section 6 concludes.

2 The model

As the previous discussion implies, oil shocks have been included in VAR models in a variety

of ways in the previous literature. From a theoretical perspective, none of the methods is ex

ante better than another one. The number of variables used in the models varies from three in

the simple model introduced by Kilian (2009) to many dozens in the FAVAR model used, for

example, by Aastveit (2009).

The current study attempts to strike a balance between the simplicity of the model and the

applicability of it for studying not only oil market shocks, but also the interaction between oil

market variables and other key macroeconomic variables. The idea is to illustrate how such

a simple model can be used for inference by analysing impulse response functions and also

a simple counterfactual experiment. The model used in the analysis is a six-variable SVAR

model concentrating on the US economy, with the aim of including key shocks affecting the US

business cycle as well as the global oil market. The variables included in the model are global

oil production, an oil demand indicator, the real price of oil, a US GDP indicator, US inflation

and US monetary policy rate. The model is similar in structure to monetary oil market models

used in the recent literature (see, for example, Peersman and Van Robays (2009)).

The methodology of the paper is based on a simple reduced-form VAR model of the following

type:

Yt =

L∑
i=1

BiYt−i + ut (1)

where Yt is an Nx1 vector of endogenous variables (so in my model N = 6), L is the lag length

of the VAR, Bi are the NxN coeffi cient matrices, and ut is a vector of white noise reduced-form

innovations with a variance-covariance matrix Σu.

2.1 Data

The variables included in the model are global oil production, an oil demand indicator (see Section

2.2 for more details on the demand indicator), the real price of oil (West Texas Intermediate

brand), a monthly US GDP indicator (measured by the Chicago Fed National Activity Index),

US inflation and US monetary policy rate (proxied by 3-month interbank market rate). All the

data are in stationary form: inflation and GDP are measured by year-on-year change, the supply

and demand indicators are in deviation from a long-term trend, the oil price is in (log) level, and

the interest rate is in level. The sample for the model is 1974M1 to 2010M12, and there are 12
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lags in the model1 . The model also includes a constant and 11 seasonal dummies2 , which are

suppressed for simplicity in equation (1).

2.2 Coincident oil demand indicator

Using the oil demand indicator introduced by Kilian (2009) has become common practice in

recent oil market VAR models. This indicator measures oil demand pressures by combining global

bulk dry shipping freight rates to form a single index. However, this indicator (henceforth K09

indicator), whilst offering a good proxy for general demand pressures in the commodities markets

on a monthly frequency, suffers from certain drawbacks. The K09 indicator is heavily dependant

not only on demand pressures, but also on supply of cargo ships, which might be expected to lag

the economic cycle somewhat. Furthermore, it is not clear why dry shipping freight rates should

react to some of the shocks in the way typically imposed on the sign restriction VAR literature

(for more details, see Section 3.1 below). For example, it is not unambiguous why a shock of a

precautionary increase in oil demand would lead to a decrease in these freight rates. If anything,

the increase in oil demand might lead to upward pressures in all kinds of shipping freight rates.

Consequently, I introduce a new alternative oil demand indicator. This monthly coincident

demand indicator is based on variables that can be expected to reveal relevant information about

oil market demand pressures. The coincident demand indicator is based on monthly industrial

production and petrol consumption data, i.e., economic activities that directly and instantly

affect the demand for oil. I construct the indicator by combining indicators that can be expected

to affect the demand, in a state-space framework into a single demand indicator a la Stock and

Watson (1991) (for more technical details, see Appendix A). Some of these indicators, especially

for emerging markets, are not available for the entire sample history used in my VAR model.

However, the state-space framework allows for missing values to be filled in by the recursive

Kalman filter estimation technique.

The indicator used in the model is as parsimonious as possible and has only three vari-

ables; OECD industrial production volume (sourced from the OECD), US personal consumption

expenditures on oil (the US Bureau of Economic Analysis), and emerging markets industrial pro-

duction volume (CPB Netherlands Bureau for Economic Policy Analysis). These subcomponents

are depicted (as deviations from long-term trends) in Figure 1. The figure shows that while the

direction of the subcomponents has not always been similar, the demand indicator captures the

general direction, and especially the importance of emerging market demand in the early part of

1Traditional information criteria favour a shorter lag structure. However, as pointed out by Hamilton and

Herrera (2004), it is important to have suffi ciently long lag structures in oil market VARs. In any case, the results

are qualitatively robust to both shorter and longer lag structures.
2Even though none of the variables is expected to necessarily show a strong seasonal pattern, as is somtimes

customary in oil market models of this type (see, for example, Kilian and Murphy (2011)), seasonal dummies are

included. However, the results are very similar without the dummies.
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the 2000’s quite well.

The coincident demand indicator, together with the K09 indicator, is illustrated in Figure 2,

as deviations from the long-term trend. As can be the seen in the graph, the differences between

the two indicators are normally not large. However, during the 2000’s, the coincident demand

indicator shows a more steady increase, and then the drop in the latter half of the decade is more

pronounced in the K09 indicator.

The choice of the demand indicator is, of course, arbitrary, and other indicators might also

be suggested. However, the coincident demand indicator has advantages over the K09 indicator.

First, it attempts to capture variables of the global economy that are directly affected by oil,

but also carry a macroeconomic interpretation. Second, the coincident demand indicator has

a higher correlation with measures of global GDP growth and business cycles than the K09

indicator; over the sample horizon of the current study, the correlation coeffi cient of the coincident

demand indicator with global GDP growth (on a quarterly basis) is 0.42 and with the global

business cycle 0.61, whereas the corresponding correlations for the K09 indicator are 0.09 and

0.33, respectively3 . While not proving any definite superiority of the coincident demand indicator,

these facts at least suggest a place for it as a viable alternative4 .

While the choice of the demand indicator is unlikely to cause dramatic changes for inference in

large VAR models, it can still have a substantial effect in some models for some impulse responses.

As an example, this is highlighted in Figure 3 for the impulse response of oil production to an

oil demand shock in the simple 3-variable structural oil market model (which is based on a

Choleski identification scheme) introduced by Kilian (2009). As can be seen from the chart,

after the initial impact period (when, by construction, oil supply does not respond to an oil

demand shock), oil supply is much more responsive to the shock, when oil demand is measured

by the coincident demand indicator than when it is measured by the K09 indicator. In fact, with

the K09 indicator, the response isn’t statistically significant apart from one period. While oil

production can typically be expected to respond sluggishly to oil demand shocks, the positive

response with the coincident demand indicator is perhaps more intuitive.

3The quarterly global GDP time series is derived by linking ECB data (available from 1981 onwards) with

GDP growth rates in OECD countries for the pre-1981 period. The business cycle is computed by calculating a

trend with a Hodrick-Prescott filter.
4One alternative to compare different oil demand indicators would be to see how they react in situations

where there are demand pressures in an oil market producing oil near full capacity. Unfortunately, such capacity

measures are not available for the length of the sample.
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Figure 1: Subcomponents of the oil demand indicator

Figure 2: Oil demand indicators
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Figure 3: Impulse responses (in months) of oil production to an oil demand shock in Kilian

(2009) oil model. Note: 16th and 84th percentile confidence intervals.

3 Shock identification

3.1 Sign restriction motivation

In reality, oil prices are constantly affected by different kinds of shocks of different sizes, which

are priced in the markets intra-day. Due to the diffi culty of modelling all the intra-day shocks, it

is conventional to concentrate on a few lower-frequency shocks which can be easily defined. As

in any market, these shocks are usually demand and supply shocks and possibly some form of

expectational shocks. Following Kilian (2009), in most recent oil market VARs there are usually

three different kinds of shocks than can affect the oil market. First, there are oil supply shocks,

which are shocks affecting the current physical availability of oil. Second, there are aggregate

demand shocks, which are defined as shocks to the current demand of oil driven by fluctuations

in the global business cycle. Finally, there are precautionary demand shocks, which are shifts in

precautionary demand for oil driven by expectational shocks to the demand and supply balance

in the oil market.

My approach for identifying the oil shocks follows these definitions. However, unlike most

other studies, I also allow for selected macroeconomic shocks (namely, a US demand/supply shock

and a monetary policy shock) in the model5 . Hence, whereas the traditional oil market models

5 In this respect, my model is similar in spirit to those of Aastveit (2009), which allows for a monetary policy

shock in addition to the three oil market shocks, and of Lippi and Nobili (2009), which allows for demand and
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typically allow for business cycle fluctuations to affect the oil market through an aggregate

demand shock, I will include selected macroeconomic shocks in my model explicitly. This, I

believe, will offer a more realistic view on the interactions between different kinds of non-oil

shocks typically hitting a macroeconomy (in this case, the US), and the oil market. This feature

of my model also follows the spirit of the methodology introduced by Mountford and Uhlig (2009)

to study the effects of fiscal policy shocks in a business-cycle VAR.

Unlike, for example Kilian (2009), my modelling strategy also makes an effort to move away

from traditional, purely recursive ordering schemes. In this respect, my sign restriction modelling

strategy is closer to oil market model identification strategies introduced by Baumeister and

Peersman (2009, 2011), Peersman and Van Robays (2009) and Lippi and Nobili (2009). Although

some degree of ordering is required, restrictive (and potentially incorrect) ordering of the different

kinds of shocks in the oil market is avoided.

The sign restrictions assigned to the shocks in the model are presented in Table 1. Just like in

Mountford and Uhlig (2009), there are two kinds of shocks in the model. In my model, these are

oil market shocks and general macroeconomic shocks for the US economy. The sign restrictions

imposed on the oil shocks follow the conventions of the previous literature, and hence require

little justification. Negative oil supply shocks can be expected lift the oil price and if anything,

lower the oil demand indicator. Both types of demand shocks will naturally lead to an increase

in the oil price and (at least eventually) oil production. The pure oil demand shock is driven by

an increase in the demand indicator, while the precautionary shock will lead to a decrease in the

demand indicator (or, to be more precise, in economic activities requiring crude oil), as demand

is directed away from its economic use to a precautionary use6 . Note that the oil market shocks

are all defined as shocks that lift the oil price (i.e., either a cut in production or an increase in

demand) and that the model is agnostic about the effects of the oil shocks on US GDP.

The general macroeconomic shocks also follow previous conventions in the literature. US

demand shock (which can be seen as a positive business cycle shock) lifts both activity and

prices in the US, while a supply shock (which can be interpreted as a positive productivity

shock) lifts activity, but lowers prices. The monetary policy shock (a monetary policy rate hike)

has a negative effect on prices and activity. Note that the model is agnostic about the effects

of the US macroeconomic shocks on the oil market variables, since even though shocks in an

economy the size of the US can be expected to have an effect on these variables, it cannot be

presumed.

All the shocks in the model are one standard deviation changes in the restricted variables.

All the sign restrictions are required to apply for 6 months (i.e., K = 5 in equation (5)), which is

supply shocks both in the oil market and the US economy.
6 In the benchmark model, I am not interested in modelling speculation and/or inventory behaviour explicitly,

so no inference on these factors can be drawn. Some alternatives for this are studied below. For studies addressing

these issues more explicitly, see, for example, Kilian and Murphy (2011), or Lombardi and Van Robays (2011).

11



standard in the literature7 . This time period can be expected to be long enough for the shocks

to have the desired effects on the restricted variables.

Table 1: VAR model sign restrictions

In addition to the sign restrictions, I also restrict the supply elasticity after both of the oil

demand shocks. In my model, as well as in the previous literature, supply elasticity is defined

as the ratio of the change in oil supply divided by the change in the real price of oil for an

oil demand shock. Hence, as the variables are in logs, the supply elasticity can be defined as

the structural impact response (i.e., the impact period coeffi cient in the structural model) of oil

supply divided by the impact response of the real price of oil for an oil demand shock. According

to the previous literature, this elasticity can be expected to be small, as oil production typically

responds slowly to changes in price. According to Kilian and Murphy (2009), this elasticity

could be somewhere between 0 and 0.025 (i.e., a one percent increase in the price would cause

maximum a 0.025 percent increase in supply). However, since I want to remain agnostic about

the possible magnitude of the elasticity, I only restrict8 it to lie between 0 and 0.2.

3.2 Sign restriction strategies

Generally, following Uhlig (2005), there are two different types of sign restriction strategies used

in VAR models; a pure sign-restrictions (PSR) approach and a penalty function approach9 .

Traditionally, in previous oil market models, sign restriction strategies have concentrated purely

on the PSR approach. As has been widely pointed out in the literature (see, for example, Fry and

Pagan (2007)), deriving median responses based on the accepted draws in the PSR approach is

theoretically incorrect. This is because the accepted responses come from different models, due

to the fact that coeffi cients of the model change for each draw. Furthermore, even though some

solutions have been suggested for overcoming these problems in the PSR approach, my model

7However, the results presented below are qualitatively robust to different values of K, like K = 11, which is

another popular option in the literature.
8 In the benchmark model simulations detailed below, this restriction rejects about 75% of the draws.
9Appendices B and C describe these two methodologies in more detail.
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is so large that searching for accepted draws with the PSR approach becomes very cumbersome

in practice. This is due to the fact that even excluding the supply elasticity restrictions the

benchmark model includes 114 sign restrictions altogether (the 19 sign restrictions in Table 1

over 6 months)10 . In addition, it is important to notice that the sign restrictions do not uniquely

identify all the shocks; in particular, the US demand shock could be observationally equivalent

to any of the oil market shocks, since the sign restrictions do not preclude each other. Hence, in

my benchmark model, I will concentrate on the penalty function approach. To my knowledge,

this is a unique feature of my model, as this approach has not been applied to oil market VARs

in the previous literature.

As regards carrying out the penalty function approach, and following Mountford and Uhlig

(2009), I first identify the oil market shocks via a penalty function and sign restrictions, thus

ascribing as much movement in the oil market variables to these shocks as possible. This is

intuitive, since oil market dynamics can be expected to be mostly affected by shocks in oil demand

and supply directly. The US macroeconomic shocks are then identified via sign restrictions as well

as orthogonality restrictions to the oil market shocks. These orthogonality restrictions also allow

the shocks to be uniquely identified, unlike in the PSR approach. This is because the penalty

function procedure is somewhat reminiscent of a causal ordering (like a Choleski decomposition).

If the penalty function was linear, it would be possible to use a Choleski decomposition to

minimise the penalty function. Since the penalty function used here is, however, non-linear and

involves the impulse responses for several periods, this is not possible, but the analogy may still

be helpful to understand the procedure and the results (see Mountford and Uhlig (2009)).

As Fry and Pagan (2007) point out, the theoretical problems related to the median responses

of the PSR approach are averted in the penalty function approach, as long as the criterion

function is a reasonable one. However, it must be of course recognised that this is an additional

restriction on the model, and more than just sign restriction information is used for inference.

However, I maintain that the additional restrictions used are fairly loose and intuitive, and hence

the sign restriction strategy is viable.

4 Results

4.1 Benchmark results

As mentioned above, the identification strategy used in this study is based on sign restrictions. As

regards the PSR approach, apart from the theoretical problems detailed above, the identification

tends to be relatively weak, as confidence bounds are large11 . Hence, the PSR approach would

not appear to be a constructive method in this kind of a model.

10Simulations suggest that with these sign restrictions, it will take around 100,000 draws to generate 1 accepted

draw. Thus searching for a suffi cient amount of accepted draws becomes an extremely time-consuming task.
11These results are available from the author on request.
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The impulse responses for the penalty function approach (with 16th, 50th and 84th quantile

confidence bounds) are presented in Appendix D. The impulse responses are based on 1,000

accepted draws. This sign restriction methodology provides some interesting results, and the

responses not restricted for their signs appear intuitive. As regards the oil market shocks (ordered

first in the model), an oil supply shock that cuts production, causes the oil price and US inflation

to increase, as well as the US economy to contract in the short term. The macroeconomic effects

in the US of a precautionary oil demand shock are fairly similar to those of the supply shock,

except that the inflationary effect is more persistent, which also leads to a more positive reaction

of the monetary policy interest rate. The oil demand shock, on the other hand, leads to a more

pronounced effect on the real price of oil, suggesting that pure demand shocks have been more

important in driving the oil price than supply shocks. Furthermore, the oil demand shock has a

positive effect on US GDP in the short term, probably reflecting the favourable global economic

situation related to positive oil demand shocks. The effect on US inflation and monetary policy

is also more pronounced than in the other two oil market shocks.

As for the US macroeconomic shocks, the effects on the domestic economy are largely in line

with the previous literature. The US demand shock has a fairly significant effect on the real

oil price, but this effect is not as large or persistent as those caused by oil market shocks. The

effects of the US monetary policy shock on the real price of oil are relatively limited. It is also

worth noting that the US supply (i.e. productivity) shock leads to an increase in oil demand and

price, even though these effects are not as large as for the US demand shock.

4.2 Robustness checks

The following two subsections present the results of robustness checks on the model. In particular,

the issue of the robustness of the results to different specifications of the penalty function is

examined. Furthermore, the results for a model including oil stocks, as suggested by Kilian and

Murphy (2011), are also reported.

4.2.1 General robustness checks

As noted above, it must recognised that the penalty function imposes an additional restriction

on the model, and hence its validity requires some justification. Here, similar justifications to

those used by Uhlig (2005) in the case of monetary policy shocks can be used. First, the reward

in the penalty function given to responses satisfying the sign restrictions is plausible, because

I want to ensure that the responses caused by the shocks are economically meaningful, and

not merely the product of some other, smaller, possibly random shocks hitting the economy.

Second, because I want to impose sign restrictions, the penalty function should be asymmetric,

punishing violations a lot more strongly than rewarding large and correct responses. Third, for

the minimisation procedures to work, the penalty function needs to be continuous. Fourth, I want
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to punish even small violations (which is why e.g. a quadratic functional form is less appealing

than the linear form), but also, I want to punish large deviations more than small ones (which

is why e.g. a square root specification is less appealing). However, to examine the robustness of

my results, I have also carried out the estimations in forms where the x in the penalty function

is quadratic (i.e. x2), square root (
√
|x|) and symmetric (f(x) = x if x > 0). In all these

robustness checks, the results stay qualitatively similar to the benchmark specification. Hence,

even though the benchmark penalty function is to a certain extent ad hoc, the results are robust

to changes in its form.

4.2.2 Model with oil stocks

In the spirit of Kilian and Murphy (2011), the model was also extended to include a seventh

variable, namely oil stocks12 . In this model, following Kilian and Murphy (2011), I define a

speculative demand shock as a precautionary shock, which leads agents to accumulate crude oil

stocks (for example, in expectation of a forthcoming supply disruption)13 . This will lead to an

increase in the oil price, but since the stock accumulation disrupts current oil availability, will

also lead to an increase in oil production and/or a decrease in the oil demand indicator. The

other shocks in the model follow the 6-variable benchmark model. It needs to be emphasised that

the other two oil market shocks, the oil demand and oil supply shock, relate to shocks in current

oil flows. The sign restrictions applied to the oil market shocks (the non-oil market shocks are

suppressed for simplicity) are presented in Table 2. The model also follows other restrictions

set out by Kilian and Murphy (2011), namely dynamic sign restrictions (although I am slightly

more agnostic about the length of the shocks and consistently with the benchmark model, allow

for K = 5), price elasticity of oil supply and price elasticity of oil demand14 .

The results of the model are largely very similar to those obtained by the benchmark model,

which further confirms the robustness of the results to different specifications. In Appendix E, I

only present the impulse responses of the oil market variables to oil market shocks. According

to these results, the speculative demand shock has had a relatively persistent effect on the oil

price. Furthermore, this shock leads to a more persistent increase in oil stocks. This is intuitive,

and in line with the results of Kilian and Murphy (2011), as the precautionary motive prompts

agents to hold oil stocks for an extended period of time.

12Following Hamilton (2009) and Kilian and Murphy (2011), global oil stocks are approximated by using OECD

stock data from 1988 onwards, and by using US crude oil stocks as a scaling factor of OECD stocks between 1974

and 1987. All other data in the model follow the 6-variable benchmark model.
13Note that the speculative shock is agnostic about its cause, and even though the model does not include oil

futures markets explicitly, arbitrage will ensure that futures price increases lead agents to buy inventories in the

spot market.
14Kilian and Muprhy (2011) introduce the concept of oil demand elasticity in use (ηt), which is a time-varying

measure taking into account the response of both current oil production and oil stocks to an oil supply shock.

Following the authors, I impose the restriction of −0.8 ≤ ηt ≤ 0. For more details on how to derive the measure,
see Kilian and Murphy (2011).
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Table 2: 7-variable VAR model oil market sign restrictions

5 An example of a counterfactual analysis

To illustrate another fruitful way of using an oil market VAR model, which also includes macro-

economic variables, this section considers a counterfactual conditional forecasting example. For

this experiment, the 6-variable VAR model described above is first estimated from 1974M1 to

2004M6. Around this time, oil demand and the real oil price started their long ascent, while oil

production growth faded (see Figure 4). The counterfactual experiment examines the question of

what the consequences would have been of oil supply growth continuing at levels seen just before

the latter half of 2004. Specifically, the counterfactual experiment assumes that for 2004M7 to

2008M6, the year-on-year oil production growth would have stayed constant at 5%. Of course,

it is improbable that capacity constraints and/or OPEC decision-making would have allowed

production to stay at such levels during this period, but nevertheless, this experiment can give

an insight into the potential effects of the rapid oil price increase of the latter half of the 2000’s.

Technically, from 2004M7 onwards, the experiment is carried out by estimating the model

parametres (called ya henceforth) conditional on the actual oil production numbers, and then

estimating the parametres (called ycf ) conditional on the counterfactual production numbers15 .

Then, the paths taken by selected variables of interest in the counterfactual scenario are sub-

tracted from the paths in the actual scenario (i.e., ycf − ya). It might seem logical instead to

compare actual model model parametres (in other words, not conditionally forecasted on actual

oil production numbers) to the counterfactual experiment. However, this approach would mix all

the other sources of fluctuation in the parametre values with the pure effects of oil production,

and hence, would not help in eliciting the effects of the counterfactual experiment.

A potential caveat in the analysis is the dependence on the assumption that for the validity

of the analysis, the coeffi cients of the model cannot have changed between 2004M7 and 2008M6.

If they have, the paths would mix effects of the counterfactual analysis with changes in the

behavioral relationship (Lenza et. al. 2010)). There is evidence that, even though the coeffi cients

may have changed quite dramatically in the more distant past, the changes in the more recent past

15This strategy has been used recently, for example, in the literature studying the effects of non-standard

monetary policy measures (see Lenza et. al. (2010)).
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Figure 4: Counterfactual oil production assumption and relevant oil market variables

have been more modest (see Baumeister and Peersman (2011)). Furthermore, a traditional Chow

breakpoint test strongly rejects a structural break in the middle of 2004. Hence, I consider this

evidence enough to support the assumption and consequently the validity of the counterfactual

experiment.

The results of the experiment (i.e. ycf − ya) for the US GDP, inflation and the real oil price
are presented in Figure 5. The paths of the variables are intuitive; in the counterfactual scenario,

the real oil price would have been nearly 10% lower by the beginning of 2008, while US GDP

would have been slightly higher, and inflation initially lower than in the actual scenario. Based

on this analysis, considering the subsequent steepness of the fall in US GDP after the recent

recession set in, a lower oil price caused by higher supply would not have been enough to prevent

the recession. Hence, this counterfactual scenario does not support the claim made, for example,

by Hamilton (2009) that the increase in the oil price was a major cause of the US recession in

the late 2000’s, or at least that this effect could have been prevented by higher oil production.

The result also further emphasises the role of demand as the main driver of the strong rise in

the oil price in the 2000’s.

6 Conclusions

This paper carries out an analysis of oil market shocks in a traditional business-cycle VAR. It

makes three main contributions to the existing literature. First, it introduces a new six-variable
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Figure 5: The difference between the selected VAR model variables under actual and counter-

factual forecasting scenarios

business cycle oil market VAR, with a new indicator for measuring oil demand. The model

takes into account macroeconomic shocks in the US economy, thus allowing for a more realistic

setting to study the effects of oil market shocks. Second, the paper identifies the shocks in the

model with a penalty function approach, instead of the pure sign restriction approach of previous

studies. Finally, the paper introduces a counterfactual experiment to illustrate how the model

can be used to draw conclusions on recent oil market developments.

The results of the analysis largely confirm those of previous studies, although not without

exceptions. The source of the oil shock matters for its macroeconomic consequences. Oil supply

shocks have tended to be less meaningful in moving inflation than demand shocks in the US

economy over the past 35 years. Demand shocks have typically produced a more long-lasting

effect on the US inflation and monetary policy. This also conforms well with the idea that

monetary policy should react more to demand shocks that produce permanent upward pressure

on prices, than to supply shocks, which cannot be mitigated by monetary policy.

My results suggest that the US real economic activity responds differently to different oil

shocks, namely, positive oil demand shocks have been associated with a positive effect on US

GDP, while oil supply and expectational shocks have had a negative effect. Overall, however,

the response of real activity to oil shocks has been relatively muted compared to responses to

the domestic macroeconomic shocks in the US. There is little support in my results for the

claim in Bernanke et. al (1997) that monetary policy responses to oil shocks have caused large

18



macroeconomic fluctuations in the US, or for the assertion in Hamilton (2009) that oil shocks

were a major reason for the recession in the US in the late 2000’s.

In line with most of the recent literature, I also find the response of the oil price to be

dependent on the kind of shock that hits the oil market. Demand shocks have had larger and

more persistent effects on the real oil price than supply shocks, although based on the results

in the current paper, the relevance of speculation as an important driver of oil prices cannot be

ruled out either. On the other hand, general macroeconomic shocks in the US have had a less

persistent effect on the oil price. This reflects not only the fact that domestic shocks in the US

economy aren’t necessarily large enough to move the global oil market, but also the fact that

forces moving the oil price can usually be traced back to the fundamentals of demand and supply

in the oil market.

The objective of the current study is not to provide definitive answers on the macroeconomic

effects of oil shocks, or on how to measure oil demand. Rather, it offers a slightly different way

of studying these shocks and demand pressures than has been used in the recent literature, and

largely confirms the results of the emerging consensus. It also underlines the fact that different

modelling and sign restriction strategies can have a significant influence on the inference of the

results. However, all in all, we still require a deeper understanding of the nature and definition of

shocks hitting the oil market, and their policy implications for oil-importing economies. Clearly,

as suggested by most recent studies on the macroeconomic effects oil shocks - including this one

- modelling oil price shocks without taking into account the source of the shock is not a viable

avenue.
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A Appendix16

The idea of the coincident indicator model introduced by Stock and Watson (1991) is the notion

that the comovements of many macroeconomic variables have a common element that can be

captured by a single underlying, unobserved variable. The same idea is used here to try and

gather relevant indicators for crude oil demand, and then combine them for a single underlying

variable, which can then be used in the oil market VAR model.

Technically, I proceed by setting the indicator model in state-space form and estimating it

with a Kalman filter.

The state-space form of the unobserved components (UC) model used here is:

Yt = C ′tXt + vt (2)

Xt = AtXt−1 + Ftwt (3)

where equation (2) is the measurement equation, with Yt an n × 1 vector of observable

variables (n is the number of variables, expressed in deviations from sample mean of month-on-

month changes), Ct is an (n× (p+ kn)) matrix, Xt is a (p+ kn)× 1 vector of states, and vt is

an n× 1 vector of error terms (with k lags to make it i.i.d). Equation (3) is the state equation,

with a (p+ kn)× (p+ kn) matrix At, (p+ kn)× (n+ 1) matrix Ft and i.i.d error term wt. In

addition, the (n + 1)x(n + 1) covariance matrix of the error terms of the state equation is also

needed. In practice, in this application, the lag orders of both Xt (denoted by p) and vt (denoted

by k) are presumed to be two, and both Ft and At are time-invariant. Kalman filter smoothing is

then used recursively to maximise a Gaussian log likelihood function to determine the parametre

values for the model. The first element of the state vector Xt is then the final indicator.

16This is a brief description of state-space modelling with a Kalman filter. For more details, see, for example,

Stock and Watson (1991).
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B Appendix 17

Let εt denote the structural VAR model innovations derived from equation (1). To construct

structural impulse responses, one needs an estimate of the NxN matrix C in ut = Cεt. Let

Σu = PΛP and C = PΛ1/2 such that C satisfies Σu = CC ′. Then C = BD (where B is a

matrix of structural parametres obtained through a Choleski decomposition of the reduced form

parameters) also satisfies Σu = CC ′ for any orthonormal NxN matrix D.

It is possible to examine a wide range of possibilities for C by repeatedly drawing at random

from the set D of orthonormal rotation matrices D. Following Rubio-Ramirez et. al (2005), I

construct the set C of admissible models by drawing from the set D of rotation matrices and

discarding candidate solutions for C that do not satisfy a set of a priori sign restrictions on the

implied impulse response functions. The procedure follows these steps:

1. Draw an NxN matrix K of NID(0, 1) random variables. Derive the QR decomposition (to

produce an orthonormal matrix and an upper-triangular matrix) of K such that K = QR

with the diagonal of R normalised to be positive.

2. LetD = Q. Compute impulse responses using the orthogonalisation C = BD. If all implied

impulse response functions satisfy the sign restrictions, keep D. Otherwise, discard D.

3. Repeat the first two steps a large number of times, recording eachD (and the corresponding

impulse response functions) that satisfy the restrictions. The resulting C comprises the set

of admissible structural VAR models.

17This section draws heavily on Rubio-Ramirez et al (2005) and Kilian and Murphy (2009).
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C Appendix 18

Define an impulse vector, which is a vector a ∈ RN such that there exists some matrix A, where

a is a column of A, such that AA′ = Σu. Thus, the jth column of A represents the immediate

impact, or impulse vector, of a one standard error innovation to the jth fundamental innovation,

which is the jth element of εt. Furthermore, let C be the lower-triangular Choleski factor19 of

Σu and Q = [q(1), ..., q(s)] be an NxS matrix of orthonormal rows q(i), where S is the number of

shocks to be identified in the model. Any impulse vector can then be written as, a = Cq, where

q is the relevant column of Q, and q = [q1, ..., qN ], ‖ q ‖= 1. Hence, q are the identifying weights

to be determined. Following Uhlig (2005), the impulse responses for the impulse vector a can be

written as a linear combination of the impulse responses to the Choleski decomposition of Σu as

follows. Let ra(k) be the N dimensional impulse response at horizon k to the impulse vector a.

The linear combination can then be written as:

ra(k) =

N∑
i=1

qiri(k) (4)

where qi is the i:th entry of q.

Next, define the penalty function f on the real line as f(x) = 100x if x > 0 and f(x) = x

if x ≤ 0. Let sj be the standard error of variable j. Let JS,+ be the index set of variables, for

which identification of a given shock restricts the impulse response to be positive, and let JS,− be

the index set of variables, for which identification restricts the impulse responses to be negative.

To impose these sign restrictions, one solves for the weights q and thus a = Cq by solving the

minimisation problem:

q = arg min Ψ(Cq) (5)

where the criterion function Ψ(a) is given by:

Ψ(a) =
∑

j∈JS,+

K∑
k=0

f(−rja(k)

sj
) +

∑
j∈JS,−

K∑
k=0

f(
rja(k)

sj
)

The criterion function thus sums the penalties over the periods k = 0, ...,K following the

shock and over the indices of variables with positive (JS,+) and negative (JS.−) sign restrictions,

respectively. The impulse responses are normalised by the standard error sj of variable j. The

penalty function is, of course, arbitrary.

Computationally, I implement this minimisation with a simplex algorithm, using the Rats

econometric package.
18This section draws heavily on Mountford and Uhlig (2005). For further details, see Mountford and Uhlig

(2005), Appendix A.
19The Choleski factorisation is not used for identification. It only serves as a computational tool, and any other

factorisation would deliver the same results.
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To identify two impulse vectors [a(1), a(2)], the first vector can be identified as detailed above,

after which the vector pertaining to the second shock can be identified by replacing the minimi-

sation problem in equation (5) with

q = arg min
q′q(1)=0

Ψ(Cq) (6)

i.e. by additionally imposing orthogonality to the first shock.

Likewise, if orthogonality to the first two shocks is required, the minimisation problem be-

comes

q = arg min
q′q(1)=0,q′q(2)=0

Ψ(Cq) (7)

In my model, I require the oil market shocks to be orthogonal to the US macroeconomic

shocks, i.e., the oil market shocks are ordered causally first and the US macroeconomic shocks

second. The computations are performed using a Bayesian approach as in Uhlig (2005). I take a

number of draws from the posterior distribution. For each draw from the posterior of the VAR

coeffi cients and the covariance matrix Σu, the shocks are identified as described above. Given

the sample of draws for the impulse responses, confidence bands can be plotted.

23



D Appendix

Figure 6: Median impulse responses in the benchmark model. Dashed lines indicate 16th and

84th quantiles based on 1000 accepted draws.
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Figure 7: Median impulse responses in the benchmark model. Dashed lines indicate 16th and

84th quantiles based on 1000 accepted draws.
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Figure 8: Median impulse responses in the benchmark model. Dashed lines indicate 16th and

84th quantiles based on 1000 accepted draws.
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Figure 9: Median impulse responses in the benchmark model. Dashed lines indicate 16th and

84th quantiles based on 1000 accepted draws.
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E Appendix

Figure 10: Selected median impulse responses in a 7-variable VAR with oil stocks. Dashed lines

indicate 16th and 84th quantiles based on 1000 draws.
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