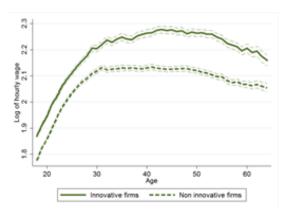
The innovation premium to low skill jobs


Philippe Aghion (College de France and LSE)
Antonin Bergeaud (Banque de France)
Richard Blundell (UCL and IFS)
Rachel Griffith (IFS and U of Manchester)

14th Joint ECB/CEPR Labour Market Workshop 6-7 December 2018, ECB, Frankfurt am Main

Motivation

- This paper results from an unexpected fact we found in the data: it is not only workers in high skilled occupations that benefit from higher wage premia from working in more innovative firms.
- In fact, the average worker in low-skilled occupation receives a significant wage premia from working in a more innovative firms.

Motivation

Average wage per hours (log) by age in the UK (2004-2015). Source: ASHE and BERD.

Our contribution

- We document that innovation is one (important) driver of between-firm differences in wages
 - using matched employer-employee data for the UK we show that workers in R&D firms get a higher wage (conditional on observables).

Our contribution

- We document that innovation is one (important) driver of between-firm differences in wages
 - using matched employer-employee data for the UK we show that workers in R&D firms get a higher wage (conditional on observables).
- We show that this premium is particularly high for some workers in low-skilled occupations.

Our contribution

- We document that innovation is one (important) driver of between-firm differences in wages
 - using matched employer-employee data for the UK we show that workers in R&D firms get a higher wage (conditional on observables).
- We show that this premium is particularly high for some workers in low-skilled occupations.
- We develop a model where innovative firms exhibit a higher degree of complementarity between workers in high-skilled occupations and some workers in low-skilled occupations.
 - replacing the latter is more risky for the firm because this complementarity arises from soft skills that are important for workers but hard to observe.
 - we then show additional empirical support for the model.

Skilled Bias Technical Change

- Our findings are consistent with skill-biased technical change.item
- But low-skilled workers draw their value from soft-skilled that are hard to observe ex-ante.

 The cost to the firm in finding a replacement can be high and workers with such quality can command a higher wage.
- Especially when the complementarity between these and high skilled workers is high.

Plan

- Motivation
- 2 Innovation and wage
- Innovation and wage by skill groups
- 4 Model
- Confronting the model to the data
- 6 Conclusion

Data

- Data for the UK 2004 2015
- Wages
 - Annual Survey of Hours and Earning (ASHE)
 - 1% sample of UK based workers (based on National Insurance number)
 - panel data we observe the same individual over a long time
 - information on labour income including bonuses
 - skill level from occupation code
- Research and Development (R&D) expenditure
 - Business Enterprise Research and Development (BERD)
 - census of firms with 400+ employees, below that random stratified sample
- Results today for private firms with 400+ employees
 - sample includes around 186,000 employees, working in a little more than 7,300 firms
 - accounts for around 70% of R&D
 - we show robustness to other samples

ASHE and wages

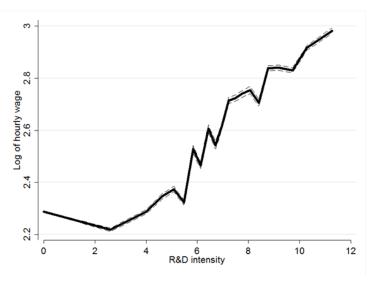
- ASHE includes detailed information on labour income and hours worked, we use hourly wages including bonuses and incentive pay
- ASHE also records gender, age, tenure in firm, firm and occupation
- we do not have individual level data on education, skills, etc.; we use a classification of occupations based on the National Qualification Framework (NQF); used to determine UK immigration rules

Low skill, no formal qualifications necessary				
Skill cat 1	process plant operative, basic clerical, cleaning, security			
Skill cat 2	drivers, specialist plant operative or technician, sales			
Intermedia	te skill, typically requires A-level or some qualification			
Skill cat 3	trades, specialist clerical, associate professionals			
Skill cat 4	medical or IT technicians, some managerial occupations			
High skills, typically required first or higher degree				
Skill cat 5	most managerial and executive occupations, engineers			
Skill cat 6	scientists, R&D manager, other professions			

Pay by skill categories

Occupation	Hourly pay	% incentive pay	% overtime	Annual earnings
Low-skill				
Skill cat 1	8.64	2.54	5.64	13,612
Skill cat 2	11.59	2.25	5.32	21,970
Intermediate-skill				
Skill cat 3	13.59	5.21	3.56	25,936
Skill cat 4	16.83	5.21	2.13	32,820
High-skill				
Skill cat 5	25.62	7.64	1.42	54,075
Skill cat 6	22.39	6.33	1.11	43,868

Measure of innovation intensity


- Expenditures on research
 - ▶ at the firm not enterprise level
 - ▶ includes both intramural and extramural R&D expenditures
 - we use R&D intensity, so we divided by employment

$$ilde{R}_{ extit{ft}} = extit{ln} \left(1 + rac{ extit{RDexp}_{ extit{ft}}}{ extit{L}_{ extit{ft}}}
ight)$$

- We also use RD = 1 if a firm ever reports doing R&D
- 1/3 of the firms have RD = 1

Workers in R&D firms are paid higher wages

conditional on labour market mean wage

The effect of innovation on wages

- A correlation between innovation and wages could reflect many things
 - innovative firms hire more males workers, more experienced workers and more full-time workers.

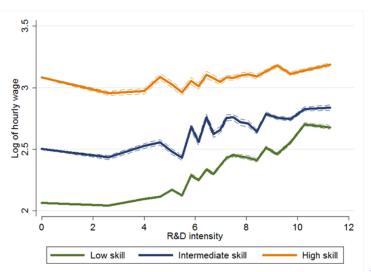
	R&D firms	Non-R&D firms
Firm employment	2,784	2,213
Share male (%)	68	56
Share full-time (%)	90	76
Age of worker	40.4	38.1
Tenure of worker	8.9	5.7
Firms	2,332	5,032
Firms-years	12,871	25,481
Worker-firm-year	263,447	363,275

• To control for these we estimate

$$In(w_{ijkft}) = \beta_1 \tilde{R}_{ft} + X\beta_2 + \eta_t + e_{ijkft},$$

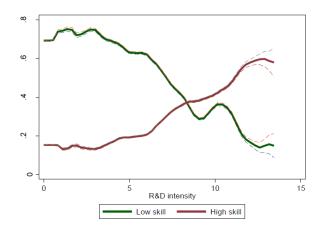
i: individual *j*: occupation *k*: labour market *f*: firm *t*: year

	Dependent variable: $In(w_{ijkft})$				
	(1)	(2)	(3)	(4)	
$ ilde{R_{ extit{ft}}}$	0.029***	0.016***	0.006***	0.001***	
	(0.002)	(0.001)	(0.001)	(0.000)	
Age	0.058* [*] *	0.034***	,	0.045***	
Ü	(0.003)	(0.002)		(0.001)	
Age ²	-0.001***	-0.000***	-0.001***	-0.001***	
Ü	(0.000)	(0.000)	(0.000)	(0.000)	
Tenure	0.023***	0.015* [*] **	0.008***	0.015***	
	(0.001)	(0.001)	(0.000)	(0.000)	
Tenure ²	-0.000***	-0.000***	-0.000***	-0.000***	
	(0.000)	(0.000)	(0.000)	(0.000)	
Firm Size	-0.032***	-0.010***	-0.008***	-0.031***	
	(0.006)	(0.004)	(0.002)	(0.003)	
Gender	0.156***	0.143***		0.155***	
	(0.006)	(0.004)		(0.003)	
Full-Time	0.244***	0.070***	0.004	0.142***	
	(0.014)	(0.007)	(0.005)	(0.002)	
FE	(k,t)	(k,j,t)	i+t	f+t	
R-squared	0.385	(k,j,t) 0.624	0.887	0.561	
N-squared	626,210	626,210	626,210	626,210	
IV	020,210	020,210	020,210	020,210	


i: individual j: occupation k: labour market f: firm t: year

Plan

- Motivation
- 2 Innovation and wage
- 3 Innovation and wage by skill groups
- Model
- Confronting the model to the data
- 6 Conclusion


The wage premium from working in a high-R&D firm is higher for workers in low-skilled occupations

Employment, by (occupation) skill and (firm) R&D

R&D firms employ more skilled workers

Share of high skill workers:

No R&D firms: 13.7%; Most R&D firms: 53.8%

Occupation	low skill	med skill	high skill	All
Оссирация	1011 011111	med onm		
\tilde{R}_{ft}	0.007***	0.003***	-0.000	0.002***
~	(0.001)	(0.001)	(0.001)	(0.001)
R_{ft} * low-skill				0.006***
~				(0.001)
\tilde{R}_{ft} * med skill				0.002***
				(0.001)
Age ²	-0.000***	-0.001***	-0.001***	-0.001***
	(0.000)	(0.000)	(0.000)	(0.000)
Tenure	0.009***	0.006***	0.001	0.007***
2	(0.001)	(0.001)	(0.001)	(0.000)
Tenure ²	-0.000***	-0.000***	0.000	-0.000***
	(0.000)	(0.000)	(0.000)	(0.000)
Firm Size	-0.005**	0.002	0.004	-0.006***
	(0.002)	(0.003)	(0.002)	(0.002)
Full-Time	-0.011*	-0.089***	-0.109***	-0.004
	(0.006)	(0.014)	(0.014)	(0.005)
low-skill				-0.157***
				(0.006)
med-skill				-0.073***
				(0.004)
FE	i+t	i+t	i+t	i+t
R-squared	0.774	0.851	0.885	0.889
N	407,336	104,319	114,535	626,206

Robustness

- These regression results are robust to a number of alternative specifications:
 - ① Other measure of R&D Tables
 - Keeping only innovative firms Tables
 - Removing the financial sector
 - Using different measures of income Tables
 - Other measure of skill Tables
 - 6 Restricting to non moving workers Tables
 - Additive Fixed effects Tables
 - etc.

Plan

- Motivation
- 2 Innovation and wage
- Innovation and wage by skill groups
- 4 Model
- Confronting the model to the data
- 6 Conclusion

Model intuition

- What explains the stronger effect of innovation on wage for workers in low-skill occupations?
 - we built a model in which there is complementarity between (some) workers in low and high-skill occupations
 - ▶ the skills of workers in high-skilled occupations are less firm-specific
 - this provides workers in (complementary) low-skilled occupations bargaining power.

Model Setup (1)

- 2 types of occupations
 - high skill with quality Q
 - ▶ low skill with quality q
- ullet Continuum of tasks indexed by $\lambda \in [0,1]$
- Each task uses one worker of each type:

$$f(\lambda, q, Q) = \lambda qQ + (1 - \lambda)(q + Q)$$

- Partial O'Ring production function (Kremer, 1993)
- ullet λ : complementarity of the task's structure
 - $\lambda=0$ there is pure substitutability between workers in low and high-skilled occupations and no complementarity
 - $\lambda=1$ workers in low and high-skilled occupations are always complementary

Model Setup (2)

Firm aggregate tasks according to:

$$F(ec q,Q)=\int_0^1 f(\lambda,q(\lambda),Q)\phi(\lambda)d\lambda$$
 where $\int_0^1 \phi(\lambda)d\lambda=1$

- Innovative firms value more in high complementarity tasks
 - ▶ (Garicano, 2000; Garicano and Rossi-Hansberg, 2006; Caroli and Van Reenen, 2001; and Bloom et al., 2014)
 - And evidence below.
- This is captured by an increase in

$$\mathbb{E}_{\phi}\left(\lambda
ight)=\int_{0}^{1}\lambda\phi(\lambda)d\lambda$$

with innovation.

Wage negotiation

- The firm engages in separate wage negotiation with each worker
 - ightharpoonup yields equilibrium wages: w_q and w_Q for each task
- If negotiations fail the firm hires a substitute
 - quality q_L at wage w_L , or Q_L at w_H
 - lacktriangle we assume $Q>Q_L>q>q_L>1$
- We assume $Q Q_L < q q_L$
 - e.g. because of less asymmetry of information
- Wage are then determined following Stole and Zwiebel (1996) with outside option for the low and high skill workers \bar{w}^L and \bar{w}^H , respectively.

Solving the model (1)

 For simplicity, assume that surplus is split equally between the firm and the workers

$$w_q(\lambda) - \bar{w}^L = \phi(\lambda) \left[f(\lambda, q(\lambda), Q) - f(\lambda, q_L, Q) \right] - \left(w_q(\lambda) - w_L \right)$$

and similarly for the high occupation worker:

$$w_Q - \bar{w}^H = \int_0^1 \left[f(\lambda, q(\lambda), Q) - f(\lambda, q(\lambda), Q_L) \right] \phi(\lambda) d\lambda - (w_Q - w_H)$$

Solving the model (1)

 For simplicity, assume that surplus is split equally between the firm and the workers

$$w_q(\lambda) - \bar{w}^L = \phi(\lambda) \left[f(\lambda, q(\lambda), Q) - f(\lambda, q_L, Q) \right] - \left(w_q(\lambda) - w_L \right)$$

and similarly for the high occupation worker:

$$w_Q - \bar{w}^H = \int_0^1 \left[f(\lambda, q(\lambda), Q) - f(\lambda, q(\lambda), Q_L) \right] \phi(\lambda) d\lambda - (w_Q - w_H)$$

• Firm needs to train the low-skill worker up to its desired quality $q(\lambda)$. Assuming quadratic cost $C(q(\lambda) - q_L)^2$, this yields:

$$q^*(\lambda) = q_L + \phi(\lambda) \frac{\lambda(Q_L - 1) + 1}{4C},$$

• Assume no training for high skill worker, so that optimal value of Q hits a corner \overline{Q} .

Solving the model (2)

Backward induction solving:

$$w_q(\lambda) = \frac{\phi(\lambda)^2}{8C} \left(\lambda(Q_L - 1) + 1\right) \left(\lambda(\overline{Q} - 1) + 1\right)$$

and

$$w_{Q}(\lambda) = (\overline{Q} - Q_{L}) \int_{0}^{1} \lambda \frac{\phi(\lambda)^{2}}{8C} [\lambda(Q_{L} - 1) + 1] d\lambda$$
$$+ (\overline{Q} - Q_{L}) \int_{0}^{1} \frac{\phi(\lambda)}{2} [\lambda(q_{L} - 1) + 1] d\lambda$$

- Effect on innovation only through $\phi(\lambda)$.
- On average, $w_q(\lambda)$ increases more with innovation than w_Q as long as $\overline{Q} > Q_L > q^* > q_L$ and $Q Q_L < q q_L$.

Outsourcing

- Recall that $q^*(\lambda) = q_L + \phi(\lambda) \frac{\lambda(Q_L 1) + 1}{4C}$ \longrightarrow Optimal value of q^* is always larger than q_L
- What if there is limited training resources?

$$T \geq \int_0^1 C(q(\lambda) - q_L)^2 d\lambda$$

- Then for some λ it is optimal to have $q(\lambda) = q_L$. We interpret it as outsourcing the task.
- The cutoff value of λ below which the firm outsource increases with innovation.

Empirical assumptions and predictions

- More innovative firms exhibit more complementarity
- Low-skilled workers that remain in a firm benefit more from an increase in R&D of the firm than high-skilled workers in that firm
- Low-skilled workers stay longer in more innovative firms (as more time and money is invested in them to getting them from q_L to q^*) and have more training
- Innovative firms tend to outsource the less complementary low skill occupations

Plan

- Motivation
- Innovation and wage
- Innovation and wage by skill groups
- 4 Model
- 5 Confronting the model to the data
- 6 Conclusion

Complementarity of workers

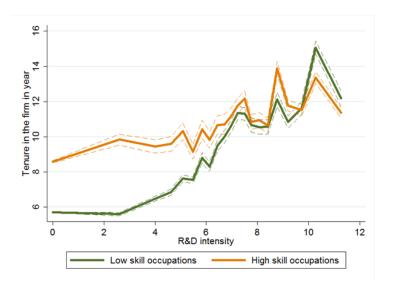
- We use data collected by the US Department of Labor called the Occupational Information Network (O*Net)
- These data are collected from workers in the US and aggregated to the occupation level
- They provide detailed measures on the characteristics of occupations and the training of workers in those occupations (among other things)
- Aggregate this by skill for different level of R&D intensity
- These are occupation level measures, so any change reflects a change in occupation composition

Consequences of an error

- The consequences of a worker in a low-skilled occupation making an error are larger in a high-R&D firm than in a low-R&D firm
 - Mean "consequences of an error"

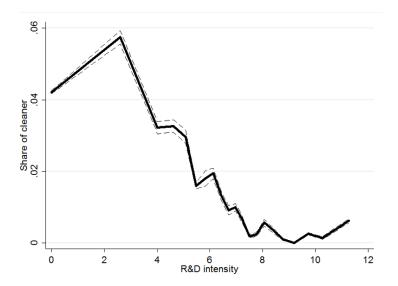
Consequence of an error

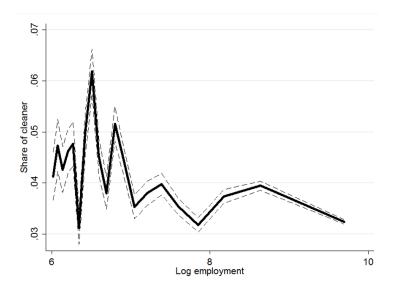
	Tercile of R&D intensity			
Skill level	None	Low	Middle	High
	(1)	(2)	(3)	(4)
Low	1.00	1.02	1.12	1.14
Intermediate	1.00	1.00	1.02	1.03
High	1.00	1.02	1.00	0.99


Training in low-skilled occupations

 The table show the mean share of workers in low-skilled occupations that receive training (on average in the US, O*NET data)

	R&D intensity				
	None	lowest tercile	middle tercile	highest tercile	
On-site or in-plant				_	
none	20.3	19.7	18.6	18.5	
up to 6 months	65.6	64.3	59.6	54.4	
6 months - 1 year	7.7	8.4	10.9	12.9	
a year or more	6.4	7.6	10.9	14.3	
On-the-job					
none	10.1	10.0	9.3	9.1	
up to 6 months	74.8	72.5	66.1	59.9	
6 months - 1 year	7.9	9.0	12.5	14.9	
a year or more	7.2	8.5	12.1	16.2	


Tenure by skill and R&D


How to measure outsourcing?

- Our model predicts that innovative firms with outsource the task that have little complementarity between high and low skill occupation workers.
- Problem: not enough time dimension to observe this directly as in Goldschmidt and Schmieder (2017).
- Instead, we focus on one specific occupation

Share of cleaners decrease with R&D

Not with employment

Plan

- Motivation
- 2 Innovation and wage
- Innovation and wage by skill groups
- 4 Model
- Confronting the model to the data
- 6 Conclusion

Conclusion

- We use new employee-employer matched data that includes information on R&D to show:
 - workers in innovative firms earn higher wages on average than workers in non-innovative firms
 - the premium for working in an innovative firm is higher for workers in low-skilled occupations
- We propose a model that is consistent with this finding
 - ▶ some low-skilled occupations are essential for high-R&D firms, these workers are complementary to the high skilled workers, and this allows them to capture a high share of the surplus than equivalent workers in low-R&D firms
- We show empirical support for this model
 - ▶ Low skill workers are more essential for high innovative firms.
 - tenure of workers in low-skilled occupations is longer in high-R&D firms than in low-R&D firms

Additional Slides

Testing different function of R&D

			De	ependent var	iable: <i>In(w_{ijkt}</i>	t)		
R&D function	(1)	$log(1 + \frac{x}{l})$ (2)	H(x) (3)	$H\left(\frac{\times}{l}\right)$ (4)	$\log(1+x)$ (5)	x > 0 (6)	x (7)	$log(\frac{x}{l})$ (8)
\tilde{R}_{ft}	0.000**	0.002***	0.001**	0.013***	0.001*	0.006	0.019	0.002
	(0.000)	(0.001)	(0.001)	(0.003)	(0.000)	(0.005)	(0.014)	(0.002)
* low-skill	0.001*	0.006***	0.003***	0.024***	0.002***	0.026***	0.072**	0.005***
	(0.000)	(0.001)	(0.001)	(0.003)	(0.001)	(0.008)	(0.031)	(0.002)
* med skill	0.000*	0.002***	0.001**	0.010***	0.001**	0.011**	0.020**	0.002
	(0.000)	(0.001)	(0.001)	(0.002)	(0.000)	(0.006)	(0.009)	(0.001)
Age ²	-0.001***	-0.001***	-0.001***	-0.001***	-0.001***	-0.001***	-0.001***	-0.001**
-	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Tenure	0.008***	0.007***	0.007***	0.007***	0.007***	0.007***	0.008***	0.005**
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.001)
Tenure ²	-0.000***	-0.000***	-0.000***	-0.000***	-0.000***	-0.000***	-0.000***	-0.000**
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Firm Size	-0.006***	-0.006***	-0.007***	-0.006***	-0.007***	-0.007***	-0.006***	-0.002
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.004)
Full-Time	-0.003	-0.004	-0.004	-0.004	-0.004	-0.003	-0.003	-0.080**
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.023)
low-skill	-0.130***	-0.136***	-0.134***	-0.132***	-0.134***	-0.134***	-0.130***	-0.067**
	(0.039)	(0.043)	(0.042)	(0.040)	(0.042)	(0.042)	(0.039)	(0.007)
med-skill	-0.051	-0.052	-0.052	-0.049	-0.052	-0.052	-0.051	-0.038**
	(0.039)	(0.043)	(0.042)	(0.040)	(0.042)	(0.042)	(0.039)	(0.005)
high-skill	0.016	0.021	0.020	0.024	0.019	0.018	0.017	0.000
	(0.040)	(0.044)	(0.043)	(0.040)	(0.043)	(0.043)	(0.040)	(.)
R ²	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.917
Observations	626,210	626,210	626,210	626,210	626,210	626,210	626,210	162,696

Testing different function of R&D

	D	ependent varial	ole: <i>In(w_{ijk}</i>	ft)
Skill Category	Low	Intermediate	High	All
	(1)	(2)	(3)	(4)
Quantile 1	0.004	-0.001	0.001	0.004
Quantile 2	0.017**	0.003	-0.007	0.010
Quantile 3	0.006	0.003	-0.001	0.002
Quantile 4	0.031***	-0.018	-0.008	0.012*
Quantile 5	0.036**	0.010	-0.000	0.023***
Quantile 6	0.036***	0.012	0.011	0.027***
Quantile 7	0.037***	0.009	-0.008	0.025***
Quantile 8	0.039***	0.014	0.000	0.031***
Quantile 9	0.044***	0.021*	-0.007	0.035***
Quantile 10	0.048***	0.021	-0.001	0.038***
Quantile 11	0.065***	0.029*	-0.006	0.053***
Quantile 12	0.070***	0.046***	-0.003	0.056***
Quantile 13	0.073***	0.029**	-0.013	0.051***
Quantile 14	0.073***	0.035***	0.012	0.064***
Quantile 15	0.061***	0.035***	0.012	0.064***
Quantile 16	0.096***	0.048***	-0.011	0.081***
Quantile 17	0.085***	0.022*	-0.003	0.071***
Quantile 18	0.090***	0.043***	0.007	0.082***
Quantile 19	0.114***	0.028**	-0.013	0.077***
Quantile 20	0.147***	0.020	-0.001	0.099***
R^2	0.774	0.851	0.885	0.887
Observations	407.341	104,318	114.535	626.210

Other measures of R&D

	Dependent variable: $In(w_{ijkft})$					
	Baseline (1)	Only Intram (2)	Only Extram (3)	Log of R&D workers (4)	Share scientists	
\tilde{R}_{ft}	0.002***	0.002***	-0.000	0.009***	0.012	
* low-skill	(0.001) 0.006***	(0.001) 0.006***	(0.001) 0.008***	(0.002) 0.005***	(0.009) 0.151***	
· IOW-SKIII	(0.001)	(0.001)	(0.001)	(0.001)	(0.020)	
* med skill	0.002***	0.002***	0.004***	0.002**	0.055***	
Age ²	(0.001) -0.001***	(0.001) -0.001***	(0.001) -0.001***	(0.001) -0.001***	(0.019) -0.001***	
Tenure	(0.000) 0.007***	(0.000) 0.007***	(0.000) 0.007***	(0.000) 0.007***	(0.000) 0.011***	
renure	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
Tenure ²	-0.000*** (0.000)	-0.000*** (0.000)	-0.000*** (0.000)	-0.000*** (0.000)	-0.000*** (0.000)	
Firm Size	-0.006***	-0.006***	-0.006***	-0.006***	0.007***	
Full-Time	(0.002) -0.004	(0.002) -0.004	(0.002) -0.004	(0.002) -0.004	(0.001) -0.005	
	(0.005)	(0.005)	(0.005)	(0.005)	(0.003)	
low-skill	-0.157*** (0.006)	-0.157*** (0.006)	-0.162*** (0.006)	-0.155*** (0.006)	-0.196*** (0.004)	
med-skill	-0.073***	-0.073***	-0.077***	-0.071***	-0.098***	
	(0.004)	(0.004)	(0.004)	(0.004)	(0.003)	
R-squared	0.889	0.889	0.889	0.889	0.854	
N	626,206	626,206	626,206	626,206	1,815,709	

Robustness to using different measures of income

	(1)	(2)	(3)	(4)
~				
\tilde{R}_{ft}	0.002***	0.002***	0.006***	0.005***
	(0.001)	(0.001)	(0.001)	(0.001)
* low-skill	0.006***	0.005***	0.011***	0.011***
	(0.001)	(0.001)	(0.002)	(0.002)
* med skill	0.002***	0.002**	0.001	0.000
	(0.001)	(0.001)	(0.002)	(0.002)
Age ²	-0.001***	-0.001***	-0.001***	-0.001***
	(0.000)	(0.000)	(0.000)	(0.000)
Tenure	0.007***	0.006***	0.068***	0.066***
	(0.000)	(0.000)	(0.003)	(0.003)
Tenure ²	-0.000***	-0.000***	-0.002***	-0.002***
	(0.000)	(0.000)	(0.000)	(0.000)
Firm Size	-0.006***	-0.009***	-0.024***	-0.022***
	(0.002)	(0.001)	(0.005)	(0.005)
Full-Time	-0.004	0.009	0.493***	0.489***
	(0.005)	(0.006)	(0.014)	(0.014)
low-skill	-0.157***	-0.151***	-0.194***	-0.189***
	(0.006)	(0.006)	(0.010)	(0.010)
med-skill	-0.073***	-0.070***	-0.060***	-0.059***
	(0.004)	(0.004)	(0.008)	(0.008)
	, ,	, ,	, ,	. ,
Fixed Effects	i+t	i+t	i+t	i+t
R-squared	0.889	0.908	0.796	0.785
N	626,206	625,982	624,208	623,859

Alternative definition of skill levels

		Depende	nt variable:	In(w _{ijkft})	
Skill Category	1 (low)	2	3	4 (high)	AII
	(1)	(2)	(3)	(4)	(5)
\tilde{R}_{ft} * low-skill * med-low skill * med-high skill	0.005*** (0.001)	0.007*** (0.001)	0.002** (0.001)	-0.000 (0.001)	0.003*** (0.001) 0.004*** (0.001) 0.005*** (0.001) 0.002**
Age ²	-0.000***	-0.000***	-0.001***	-0.001***	(0.001) -0.001***
Tenure	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
	0.007***	0.009***	0.004***	0.002***	0.007***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.000)
Tenure ²	-0.000***	-0.000***	-0.000***	-0.000	-0.000***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Firm Size	0.003	-0.007***	0.000	0.004	-0.006***
	(0.003)	(0.003)	(0.002)	(0.003)	(0.002)
Full-Time	-0.038***	-0.014**	-0.115***	-0.110***	-0.006
	(0.006)	(0.007)	(0.014)	(0.014)	(0.005)
low-skill med-low-skill					-0.170*** (0.006) -0.143***
med-high-skill					(0.006) -0.049*** (0.004)
R-squared	0.706	0.781	0.872	0.901	0.889
N	103,129	293,545	113,803	115,729	626,206

Appendix: model

Back

- In case where $n \ge 1$ low-occupation workers and $m \ge 1$ high-occupation workers. We determine equilibrium wages using ex post negotiation Stole and Zwiebel (1996).
- If the n^{th} low-occupation worker refuses the wage offer w_n^L , then the remaining n-1 low-occupation workers renegotiate a wage w_{n-1}^L .
- By induction, this provides a generic expression for the two equilibrium wages $w_{n,m}^L(Q,q,\lambda)$ and $w_{n,m}^L(Q,q,\lambda)$ (up to a constant in q, Q and λ):

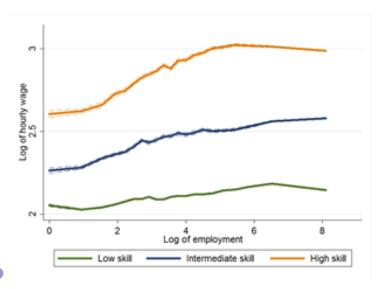
$$w_{n,m}^{L}(Q,q,\lambda) = \frac{(q-q_L)\lambda\theta}{n(n+1)} \sum_{i=0}^{n} iQ^{m}q^{i-1} - \frac{\theta(1-\lambda)}{2}(q-q_L)$$

$$w_{n,m}^H(Q,q,\lambda) = \frac{(Q-Q_L)\lambda\theta}{m(m+1)} \sum_{i=0}^m iq^n Q^{i-1} - \frac{\theta(1-\lambda)}{2}(Q-Q_L),$$

Appendix: model

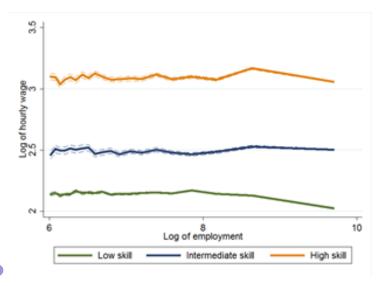
• Assume n=1 and m=2

$$\frac{\partial w_{1,2}^L(Q,q,\lambda)}{\partial \lambda} = \frac{\theta(q-q_L)(Q^2-1)}{2}$$


and

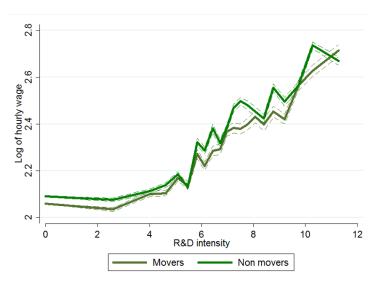
$$\frac{\partial w_{1,2}^H(Q,q,\lambda)}{\partial \lambda} = \frac{\theta(Q-Q_L)\left(\frac{q(1+2Q)}{3}-1\right)}{2},$$

• And since Q>q implies that: q(1+2Q)< Q(1+2Q)< Q(Q+2Q) (recall Q>1), we have $\frac{q(1+2Q)}{3}-1< Q^2-1$, which, combined with the assumption that $(Q-Q_L)<(q-q_L)$, immediately implies that:


$$\frac{\partial w_{1,2}^L(Q,q,\lambda)}{\partial \lambda} > \frac{\partial w_{1,2}^H(Q,q,\lambda)}{\partial \lambda}.$$

The story is different with employment

Back


The story is different with employment

Back

Non movers

Additive Fixed Effects

$$In(w_{i,t}) = \alpha_i + X_{i,t}\beta + \eta_t + \gamma \tilde{R}_{J(i,t),t} + \delta In(L_{J(i,t),t}) + \psi_{J(i,t)} + \varepsilon_{i,t},$$

	Depende	In(w _{ijkft})	
	(1)	(2)	(3)
$ ilde{R_{ft}}$	0.006***	0.001***	0.001***
	(0.001)	(0.000)	(0.000)
Age ²	-0.001***	-0.001***	-0.000***
Tenure	(0.000) 0.008***	(0.000) 0.015***	(0.000)
Tenure ²	(0.000)	(0.000)	(0.000)
Firm Size	(0.000) -0.008***	(0.000) -0.031***	(0.000)
Full-Time	(0.002)	(0.003) 0.142***	(0.002)
Age	(0.005)	(0.002) 0.045***	(0.002)
Gender		(0.001) 0.155***	
		(0.003)	
R-squared	0.887	0.561	0.895
N	626,206	626,206	581,323