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Abstract

How do changes in aggregate volatility alter the impulse response of output to

monetary policy? To analyze this question, I study whether individual prices in Pro-

ducer Price Index micro data are more likely to move in the same direction when

aggregate volatility is high, which would increase aggregate price flexibility and re-

duce the effectiveness of monetary policy. Taking advantage of plausibly exogenous oil

price volatility shocks and heterogeneity in oil usage across industries, I find that price

changes are more dispersed, implying that prices are less likely to move in the same

direction when aggregate volatility is high. This contrasts with findings in the litera-

ture about idiosyncratic volatility. I use a state-dependent pricing model to interpret

my findings. Random menu costs are necessary for the model to match the positive

empirical relationship between oil price volatility and price change dispersion. This

is the case because random menu costs reduce the extent to which firms with prices

far from their optimum all act in a coordinated fashion when volatility increases. The

model implies that increases in aggregate volatility do not substantially reduce the

ability of monetary policy to stimulate output.
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1 Introduction

Do changes in aggregate volatility alter the ability of monetary policy to stimulate the

economy? During periods of high volatility, the economy is buffeted by large macroeconomic

shocks that are likely to impact price changes. Policy makers are concerned that policy

effectiveness may decrease during these periods. This paper examines the role of time varying

aggregate volatility in price setting and its implications for monetary policy.

Monetary policy effectiveness is dependent on the flexibility of the aggregate price level,

which is determined by the the extent to which firms change their price in the same direction

after monetary stimulus. A key measure of the extent to which price changes move together is

price change dispersion. I analyze whether price change dispersion is affected by heightened

volatility and find that price change dispersion increases during periods of greater volatility.

I use well-measured and plausibly exogenous oil price volatility shocks to study how price

setting behavior responds to changes in the volatility of a common shock. Oil price shocks

are advantageous in studying how prices react to changes in volatility for three reasons.

First, oil price volatility has large variation over time. Secondly, heterogeneity in oil usage

across sectors allows me to construct industry-specific exposure to oil shocks in the spirit of

Bartik (1991). Industries that rely on oil more intensively as an input would be expected

to have stronger responses to oil price volatility shocks. Lastly, the industry-specific oil

demand variables are plausibly exogenous common volatility shocks. Oil prices are also a

specific source of volatility that the FOMC is concerned about, as the following quote shows.

What will happen with the price of oil? The uncertainties are sizable, and

progress toward our goals and, by implication, the appropriate stance of mone-

tary policy will depend on how these uncertainties evolve.

Janet Yellen, June 6, 2016

My main finding is that increased oil price volatility leads to increased price change

dispersion, which means that monetary policy is not less effective. I show this by using

heterogeneity in long run oil usage, and find that industries more exposed to oil exhibit

greater price change dispersion in response to increases in volatility than industries with low

oil exposure. My main results imply that the doubling of oil price volatility from December

2007 to September 2008 explains 44% of the average increase in price change dispersion.

The results are robust to various measures of volatility, additional control variables, and

hold both within and outside of the 2008 crisis period.

Monetary policy has the ability to stimulate output by changing the supply of money

in a basic monetary framework. However, if prices are completely flexible, then monetary
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((a)) No Shock ((b)) Positive Monetary Shock

Figure 1: Disperse Desired Price Change Distribution

((a)) No Shock ((b)) Positive Monetary Shock

Figure 2: Less Disperse Desired Price Change Distribution

policy has no effect on output. Micro-price data shows that prices change approximately

twice a year for both consumer and producer goods. Yet the selection of prices that do

change is also important for monetary non-neutrality. Greater dispersion of price changes

lowers the fraction of price changes that are affected by a change in money, and is therefore

a key measure of the degree of monetary non-neutrality. This is illustrated in Figures 1 and

2. The left panels show a disperse and less disperse desired price change distribution prior to

a monetary shock. Both distributions feature positive and negative price changes but have

on average positive price changes.

The right panels show the distribution after a positive monetary shock. An increase in the

supply of money shifts the desired price change distribution to the right, with more positive

price changes than prior to the shock. The purple area shows the increase in positive price

changes. The figures show that the monetary shock has greater inflationary consequences in

the less disperse distribution, as more desired prices are close to the adjustment threshold.

Heightened aggregate volatility causes the price change distribution to be more disperse,

which leads to decreased inflationary effects and increased real effects of monetary policy.

A general equilibrium price setting model with fixed costs of price adjustment that

matches the micro-pricing facts is used to quantify the effects of monetary policy during

periods of increased aggregate volatility. Changes in volatility have two mechanisms through

which they affect firm price setting in a model with fixed costs of adjustment, a real options

effect and a volatility effect. The real options effect increases the region of inactivity in

the model, by pushing the action and inaction bands outward, thereby decreasing frequency

of price adjustment. The volatility effect increases the variance of the common aggregate

shock that affects firms. Increases in volatility to a common shock imply that larger shocks

will affect firms, but the resultant price changes will be synchronized in the direction of
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the common cost shock which decreases price change dispersion. This stands in contrast to

changes in idiosyncratic volatility, where the volatility effect pushes more price changes in

both directions and increases price change dispersion.

I first show that the empirical relationship between price change dispersion and oil price

volatility is particularly surprising in the context of a modern menu cost model similar to

Golosov and Lucas (2007) and Midrigan (2011). This type of model with a fixed menu cost

predicts decreased price change dispersion in response to an oil price volatility shock, and

the dispersion falls more for sectors with greater oil usage. An increase in oil price volatility

is a common shock, and this causes more prices to change and move in the direction of the

cost shock which decreases price change dispersion.

I then introduce heterogeneous and random menu costs to the model as in Dotsey et al.

(1999) or Luo and Villar (2015) and show that it is able to match the empirical findings.

Firms draw menu costs from a non-degenerate distribution, which increases the randomness

of which prices will change. Firms have a substantial probability of a large menu cost such

that the price will almost never change, which attenuates the price response to a more

volatile common shock. During a period of increased oil price volatility some price changes

will be more extreme, but due to the firm specific random menu cost a substantial portion of

price changes will be reacting to their idiosyncratic productivity shock which decreases the

synchronization of price change direction in response the common shock. This feature also

limits the increase in price change frequency, by having some fixed costs be large enough

such that a firm would never choose to change the price that period1.

The model is then used to quantify the effectiveness of monetary policy to stimulate

consumption during a period of increased oil price volatility. I find that in the general equi-

librium model the graphical intuition about the empirical results holds, and that monetary

policy is only slightly less effective. The model shows that monetary policy’s ability to

stimulate consumption on impact of the shock falls by less than 1% during a one standard

deviation increase in oil price volatility. The small decrease in ability to generate real effects

is due to an increase in price change frequency, which balances out the increase in effective-

ness due to the increase in price change dispersion. The slight decrease is in comparison to

the counterfactual fixed menu cost model, which would suggest that monetary policy effec-

tiveness falls by over 8%. More prices are changing because of the large oil price shocks,

which enables them to simultaneously incorporate the increase in money.

Aggregate and idiosyncratic volatility can both increase price change dispersion, but they

1I focus on price change dispersion in the analysis because I find no evidence that the frequency of price
change reacts to oil price volatility. This further supports a model that limits the reaction of frequency to
aggregate volatility shocks.
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have different implications for the effectiveness of monetary policy. My results suggest that

policy makers need to consider the source of volatility, aggregate or idiosyncratic, in order

to effectively manage the tradeoff between inflation and output stabilization.

The paper is organized as follows. Section 2 describes the micro-price data and oil

volatility processes. Section 3 analyzes the micro-price data and shows that price changes

are more dispersed during periods of high oil volatility for industries with greater sensitivity

to oil. Section 4 presents and calibrates a quantitative price setting model with first and

second moment oil price shocks. Section 5 discusses model implications for monetary policy

effectiveness during periods of heightened oil price volatility. Section 6 discusses other models

of price setting. Section 7 concludes.

1.1 Related Literature

This paper contributes to our understanding of the effects of volatility on the economy.

The literature includes the seminal paper on volatility of Bloom (2009) and the introduc-

tion of volatility into a general equilibrium framework of Bloom et al. (2014). Fernandez-

Villaverde et al. (2014) study the effects of changes in fiscal policy volatility in a New

Keynesian model with quadratic adjustment costs for pricing. This paper differs by study-

ing the effects of oil price volatility in a model with fixed costs of adjustment for pricing

while matching micro-pricing facts.

Within the literature on the association between volatility and price setting behavior,

Vavra (2014) and Bachmann et al. (2013) are most closely related to this paper. Vavra

(2014) studies the impact of idiosyncratic volatility shocks on price setting moments over

time. He uses CPI data to document the distribution of final goods prices over the business

cycle and shows that the cross sectional variance of price changes as well as frequency of

price adjustment are countercyclical. The paper then shows that these two facts are matched

by a standard menu cost model with second moment shocks to idiosyncratic productivity,

while a model with only first moment shocks makes the counterfactual prediction that price

change dispersion and frequency of adjustment are negatively correlated. Bachmann et al.

(2013) asks how business forecast uncertainty affects the frequency of price change. They

find that increased uncertainty about production increases price flexibility. My paper differs

by examining the effects of a common source of volatility on price setting behavior.

More broadly in the price setting literature, papers have investigated how various sources

of volatility affect prices. Baley and Blanco (2015) construct a model with menu costs

and imperfect information about idiosyncratic productivity, and find that this mechanism

strengthens the volatility effect and increases price flexibility due to uncertainty. Drenik
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and Perez (2014) use the manipulation of inflation statistics in Argentina to understand the

role of informational frictions on price level dispersion. They find that the manipulation

of statistics is associated with greater price level dispersion, and construct a price setting

model with noisy information about inflation and find monetary policy is more effective when

there is less precise information. Berger and Vavra (2015) document a positive relationship

between exchange rate pass through and item level price change dispersion.

This paper contributes to the literature on state dependent models of price setting con-

sistent with micro-data facts by introducing a new empirical fact on the relationship between

price change dispersion and oil price volatility. The model of Golosov and Lucas (2007) fea-

tures a very strong selection effect, where only large price changes occur. Many papers such

as Midrigan (2011), Nakamura and Steinsson (2010), and Karadi and Reiff (2016) have since

argued that the selection effect is weaker than in the Golosov and Lucas model. In particular,

Midrigan (2011) introduces leptokurtic productivity shocks, which increases the dispersion

of price changes. This reduces the mass of prices that would change for a small monetary

shock, increasing monetary non-neutrality. Nakamura and Steinsson (2010) introduce real

rigidities into the menu cost model through a multi-sector model. Heterogeneity amongst

sectors in frequency and average size of price change increases monetary non-neutrality by

a factor of three. Karadi and Reiff (2016) show that idiosyncratic productivity shocks that

feature stochastic volatility better matches the response to large VAT changes, and argue

that this model would feature a degree on non-neutrality between that of the Midrigan model

and Golosov and Lucas model. Luo and Villar (2015) document that the price change dis-

tribution skewness increases as the rate of inflation increases and argue that the previous set

of models are unable to match this empirical fact. They augment the model with random

menu costs to increase the randomness of price changes in order to fit this fact.

Lastly, this paper also discusses the effects of first and second moment oil price shocks

on the economy. Bloom (2009) and Stein and Stone (2014) also use oil shocks as a plausibly

exogenous source of volatility on investment decisions. Studying the effects of oil shocks

themselves, Blanchard and Gali (2008) construct a model with nominal rigidities in price

and wage setting, where firms and consumers use oil to study the declining role of oil in

the US economy over time. They find that a combination of a decrease in wage rigidities,

increase in monetary policy credibility, and a decrease in oil consumption for both firms

and consumers have contributed to the decrease in importance of oil price shocks. Clark and

Terry (2010) use a Bayesian vector autoregression framework and show that energy price pass

through has declined over time starting from the 1970’s. Chen (2008) also studies oil price

pass through into inflation across countries using a time varying pass through coefficient.

She finds a long run pass through of 16 percent for the US over the period of 1970 to 2006,
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and a short run pass through of slightly less than 1 percent over one quarter. Jo (2012) uses

a VAR with stochastic volatility to study the effects of oil price volatility on real economic

activity and finds that an increase in oil price volatility decreases industrial production.

2 Data Sources and Methods

2.1 Micro-Price Data

This paper constructs industry level measures of relevant price statistics using confiden-

tial item level micro-data underlying the producer price index from the Bureau of Labor

Statistics2. The micro-level data starts in 1998 and extends through 20143. Each month

around 100,000 prices are collected from about 25,000 reporters. Prices are collected for the

entire U.S. production sector.

Prices are collected from a survey that asks producers for the price of an item each month.

Items are sampled in a three stage procedure. The BLS first creates a list of establishments

within an industry. The second stage is selecting price forming units within each industry,

which are created by clustering establishments. The third and final stage is selecting specific

items within a price forming unit to sample. The BLS uses a probabilistic technique to select

items within a price setting unit, where items are weighted proportional to the value of the

category within the unit4.

I restrict the pricing data to a subset of items within the PPI. Only manufacturing indus-

tries are included which enables the study of price setting in markets where goods are not

homogeneous and firms have some price setting power5. Gopinath and Itskhoki (2010) make

the same restriction in their study of international producer pricing data. Manufacturing

industries are also a setting where oil is used as an input for production. This leaves 81

four digit industries in the micro-level data sample. While the PPI collects data on finished

goods, intermediate goods, and crude materials, only finished goods products are used in the

construction of these statistics. Aggregate price statistics are calculated by first construct-

ing an item level unweighted statistic within each four digit NAICS industry. Industry price

2The data set has been studied before in Gilchrist et al. (2015), Goldberg and Hellerstein (2009), Gorod-
nichenko and Weber (2016), and Nakamura and Steinsson (2008) along with several other papers.

3The BLS collects this price data from the view of the firm rather than the consumer, thus price collected
is the revenue received by a producer and does not include sales or excise taxes. This is in contrast to the
CPI which is the out of pocket expenditure for a consumer for a given item.

4Further details about the BLS sampling process is in appendix B.3.
5This includes goods that have a two digit NAICS code of 31, 32, or 33. However it excludes all items

in NAICS 324, Petroleum and Coal manufacturing industry, as these industries view oil price volatility as
both profit and cost volatility.
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Figure 3: Monthly Standard Deviation of Price Changes
Note: Data is seasonally adjusted with X-12 seasonal filter and presented as 6 month moving average.

statistics are then aggregated using value added weights to construct the weighted mean of

each price setting moment6.

The main focus of the empirical section of the paper is to study the effect of oil price

volatility on producer price change dispersion. Dispersion is measured as either the standard

deviation of price changes or the interquartile range of price changes. Producer price change

dispersion is measured at the industry-month level as PriceDispj,t =

√
1
I

I∑
i=1

(dpi,j,t − di,j,t)2,

where i indexes items within industry j during month t. Price change dispersion is calculated

using only non-zero price changes7. The interquartile range is calculated for the same set of

item level price changes within an industry at time t.

Figure 3 shows aggregate price change standard deviation during the 1998 to 2014 data

sample. It shows there is a large amount of variation over time ranging from 0.09 during 1999

up to 0.15 during 2003. During the Great Recession the dispersion measure increased from

6This is the similar to the method Nakamura and Steinsson (2008) use to construct PPI price statistics.
They first took the average price statistic within an item group, then took a median across item groups.

7Price change dispersion is typically constructed using only non-zero price changes such as in Vavra (2014),
Berger and Vavra (2015), Luo and Villar (2015). Similar results are obtained however when including zeros
in the standard deviation of price changes measure and results are in appendix B.8.
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Moment Freq Avg Size Frac Up Frac Small SD Kurt
CPI 0.11 0.08 0.65 0.12 0.08 6.4
PPI 0.15 0.07 0.60 0.22 0.13 15.0

Table 1: Consumer and Producer Price Index Moments

Note: All CPI moments calculated for 1988-2012 from Vavra (2014) except for fraction of small price
changes which is calculated for 1977-2014 from Luo and Villar (2015). PPI moments calculated for 1998-
2014 are author’s calculation. Small price changes are defined as |dpi,t| < 0.01.

0.13 to 0.14, an increase of 7%. This stands in contrast with Berger and Vavra (2015) who

find the IQR of price change dispersion nearly doubles from 0.09 to 0.17 in the international

producer price data set8.

To further substantiate the similarities between consumer and producer prices, table 1

shows price statistics for both the CPI and the PPI. The most notable difference between

the two data sets is that there are more small price changes in the PPI than the CPI, which

increases the kurtosis of the price change distribution in the PPI9. The correlation between

the monthly inflation measures of consumer prices and producer prices is 0.8 over the 1998 to

2014 time period10. Temporary sales are not common in the PPI, so sales filtering techniques

are not applied.

2.2 Oil Prices

I measure oil prices using the average monthly West Texas Intermediate (WTI) spot price

of oil, a particular grade of light and sweet crude oil traded in Cushing, Oklahoma. The WTI

oil price is beneficial to use because it is available at daily frequency, and allows construction

of within month volatility of oil prices. I argue that oil price and volatility movements are

plausibly exogenous to disaggregated US industries. Evidence in favor of this is that many

large price movements can be traced to events that are unrelated to the US. Rather they

can be explained by events in large oil producing regions such as the Middle East or South

America, or changes in demand elsewhere in the world.

This section will briefly summarize the evolution of oil price changes over time11. There

was a spike in the price and volatility of oil during late 2002 and 2003 related to the Venezue-

lan oil strike from December 2002 to February 2003 and the Iraq war in 2003. The nominal

price of oil then increased over 350 percent from 2003 until the middle of 2008, and Hamil-

8I find that the IQR of price change dispersion increases from 0.07 to 0.09 during the Great Recession.
9Nakamura and Steinsson (2008) show that there is a high correlation between the frequency of price

change within narrow item groups between the CPI and PPI data.
10A comparison of the CPI and PPI inflation rates are shown in appendix B.9.
11Additional discussion about the potential causes of oil price changes are in appendix B.5.
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ton (2009) and Kilian (2008b) attribute this to an increase in demand from Asia. Oil prices

plummeted from $134 in June 2008 to $34 in February 2009 due to anticipation of a global

recession while oil volatility more than doubled during the associated period. Another spike

in oil prices and volatility occurred in 2011 and is associated with the Libyan uprising.

Between June 2014 and January 2015 the price of oil fell nearly fifty percent. This decline

is attributed by Baumeister and Kilian (2015) to a decline in global activity, as well as an

increase in the supply of oil likely due to US shale production.

2.3 Oil Price Volatility

This section estimates the latent oil price volatility process using three different measures.

The preferred method of measuring oil price volatility is with a stochastic volatility model

that estimates independent first and second moment shocks from the single process for oil

prices. The process will also be consistent with the modeling section.

I assume real oil prices follow an AR(1) process with time varying volatility, where volatil-

ity follows a mean reverting AR(1) process12. Specifically,

logP o
t = ρologP

o
t−1 + eσtνt (1)

σt = (1− ρσ)σ + ρσσt−1 + φνσ,t (2)

where {νt, νσ,t} ∼ N(0,1), and σ is the unconditional mean of σt. The shock to oil price

volatility νσ,t is assumed to be independent of the level shock νt. The postulated oil price

process is the same as in Plante and Traum (2012) or Blanchard and Gali (2008) with time

varying volatility.

The parameters are estimated using Bayesian Markov Chain Monte Carlo methods. Due

to the nonlinear interaction between the innovations to oil price shocks and volatility, the

Kalman filter cannot be used but a particle filter can evaluate the likelihood, as proposed

by Fernandez-Villaverde and Rubio-Ramirez (2007). Markov Chain Monte Carlo is used

to sample from the posterior distribution. Following Born and Pfeifer (2014), a backward

smoothing routine is then used to extract the historical distribution of shocks from the

model13.

However other measures of oil price volatility are also constructed for robustness. A

GARCH model of volatility is estimated, and the extracted volatility series shows that the

two methods measure the same underlying process. Realized volatility is constructed from

12Nominal oil prices are deflated by the PPI finished goods index.
13Further estimation details for the stochastic volatility process are in Appendix B.1.
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Parameter Prior Posterior
Mean Median 95% PI

ρo Uniform(0,1) 0.999 0.999 (0.992,0.999)
ρσ Uniform(0,1) 0.887 0.9429 (0.574,0.999)
φ Uniform(0,6) 0.140 0.127 (0.053,0.276)
σ Uniform(-20,20) -2.607 -2.602 (-3.000,-2.234)

Table 2: Priors and Posteriors of Stochastic Volatility Oil Process

Note: Stochastic Volatility priors for real oil price process with time varying volatility. Process estimated

using monthly WTI data from 1986 to 2014.

within month daily oil price returns. While this is a noisier volatility process it has a

significant correlation with the other volatility series. The high correlation between the

three measures of oil price volatility shows that they are extracting a common volatility

factor that underlies oil price movements.

The conditional heteroskedasticity of oil prices in the estimated GARCH(1,1) model of

oil prices has both significant autoregressive and moving average components. Complete

description of the results is in the appendix. The GARCH volatility series is noisier than

the stochastic volatility series, but they have a correlation of 0.74 between 1998 and 2014.

GARCH volatility shows a large increase in volatility during 2009 that is also present in the

stochastic volatility measure.

The final measure of volatility for robustness is the realized volatility of daily oil price

returns. The monthly realized volatility value is constructed as:

RVt =

√√√√√ N∑
n=1

(dpn − dpt)2

N − 1
(3)

where dpn is the log difference in daily oil prices between days and n indexes number of

trading days in month t. This volatility measure differs significantly from the extracted

stochastic volatility and GARCH processes. The realized volatility series is more volatile

than the other two because it only relies on within month variation in oil prices without

any between month smoothing mechanism due to autocorrelation in the oil price volatility

process. However, there is still a significant correlation between realized volatility and the

other two volatility series, implying that all three are extracting a similar latent volatility

process for oil prices14.

Figure 4 compares the three oil volatility measures over time, while table 3 shows oil

14Over the period 1998 to 2014, the correlation between stochastic volatility and GARCH volatility is
0.74, while the correlation between stochastic volatility and realized volatility is 0.66. GARCH volatility and
realized volatility of oil prices have a correlation of 0.42.
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Variable Mean Median Standard Dev Max Min
Stochastic Vol 0.0763 0.0724 0.0222 0.1730 0.0416
GARCH Vol 0.0785 0.0736 0.0191 0.1980 0.0582
Realized Vol 0.0580 0.0510 0.0332 0.2566 0.0170

∆log(P o
t ) 0.0042 0.0119 0.0820 0.2130 -0.3132

Table 3: Oil Price Summary Statistics

Note: Summary statistics for monthly WTI real oil prices over 1998:M1-2014:M12. Volatility measures

are the standard deviation of each oil price volatility measure.

Figure 4: Oil Volatility
Note: The thick dotted red line shows the extracted stochastic volatility of oil prices, eσt , while the solid

black line shows the GARCH volatility, σt. The thin dotted gray line shows within month realized

volatility of daily oil prices.

price summary statistics during the 1998 to 2014 period. There is a spike in volatility in

all three measures during the last months of 2002 and early 2003 that occurs during the

Venezuelan oil strike and beginning of the Iraq War. Between March 2008 and December

2008, stochastic volatility more than doubles from 0.078 to 0.172. GARCH and realized

volatility have similar large increases during the same time period. GARCH volatility rises

from 0.06 to 0.15, and realized volatility nearly quadruples from 0.04 to 0.15. All three series

also have large increases during the second half of 2014.
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Figure 5: Stochastic Oil Volatility and Real Oil Price
Note: WTI nominal monthly oil price deflated by PPI finished goods index on right vertical axis and

stochastic volatility, eσt , on the left vertical axis.

3 Empirical Analysis

3.1 Oil Price Pass Through

Before moving to the main analysis, I examine the pass through of oil prices to producer

prices to show that oil price inflation affects producer price setting behavior. I estimate the

pass through equation:

πj,t = αj +
12∑
i=0

bi
(
∆logP o

t−i
)

+ εj,t (4)

where πj,t is monthly producer price inflation for a NAICS 4 industry j. αj are industry fixed

effects and ∆logP o
t are monthly changes in the spot price of oil. The regression includes 12

months of lagged oil price changes15. The results are in table 4.

The short run pass through is the coefficient b0, the impact of a change of oil prices

on producer prices during the same month16. The coefficient is positive and statistically

15Additional oil price lags do not substantially change the results.
16Restricting oil prices to pass through with at least a one month lag does not change the results. The short
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Short Run Pass Through Long Run Pass Through
0.010∗∗∗ 0.086∗∗∗

(0.003) (0.017)

Table 4: Pass Through Regression

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. Number of observation=10,106.
Number of industries=66. R2 = 0.06. Robust asymptotic standard errors reported in parentheses are
clustered at the industry level: * p < .10; ** p < .05; and *** p < .01.

significant. Given that the average industry in the sample has an oil share of 1.6%, the size

of the pass through is large. It can be interpreted as 1.0% of a change in oil price inflation

is passed through to producer prices.

The long run coefficient is
∑12

i=0 bi, and implies that 8.6% of a change in oil prices is

passed through over a year17. Oil prices can pass through not only through a direct cost

channel, but also through changes in other material costs due to input output linkages.

Another reason pass through can be large is due to capital-energy complementarities which

can generate oil price effects above their cost share as argued by Atkeson and Kehoe (1999).

These pass through estimates imply short run and long run pass through of oil prices

to industry inflation for manufacturing industries18. This is important because the pass

through estimates imply industries price setting behavior reacts to changes in the price of

oil, and could be impacted by the volatility of oil prices. In the next section I will show that

volatility of oil prices affects dispersion of industry price changes.

3.2 Price Change Dispersion and Oil Price Volatility

As motivating evidence before exploiting heterogeneity in industry oil share, I first es-

timate the time series relationship between price change dispersion and oil price volatility.

Oil price volatility is a common cost volatility shock to firms. The time series relationship

does not control for all common shocks and is not causal. Variation in industry price change

dispersion over time allows me to run the following regression:

Yj,t = η ∗∆log(P o
t−1) + λ ∗ σt−1 + γ′Xj,t + αj + εjt (5)

where t indexes time and j indexes industry. This specification maps a change in oil

price inflation and oil volatility into the average change in price change standard deviation

after controlling for industry heterogeneity with the use of fixed effects and movements in

run pass through coefficient is b1 = 0.012∗∗∗ and the long run pass through coefficient is
∑12
i=1 bi = 0.076∗∗∗.

17Exchange rate pass through regressions generally find long run coefficients close to 0.3.
18Adding additional lags to the pass through regression does not substantively change the results.
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Dependent Variable: Standard Deviation of Price Change

Volatility Measure Stochastic Vol Realized Vol GARCH Vol
(1) (2) (3)

∆log(P o
t−1) 0.010 0.019 0.011

(0.009) (0.090) (0.009)
σt−1 0.210∗∗∗ 0.081∗∗∗ 0.123∗∗∗

(0.057) (0.031) (0.048)
πj,t−1 0.111 0.114 0.122

(0.115) (0.115) (0.115)
∆IPj,t 0.002 -0.004 -0.005

(0.016) (0.017) (0.016)
EBPt−1 0.003 0.005∗∗ 0.005∗∗

(0.002) (0.002) (0.002)
VIXt−1 0.000 0.000 0.000

(0.000) (0.000) (0.000)
Industry FE Yes Yes Yes
Number of Industries 63 63 63
N 10,946 10,946 10,946

Table 5: Producer Price Change Dispersion and Macroeconomic Shocks

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. Robust asymptotic standard errors
reported in parentheses are double clustered at the industry-month level: * p < .10; ** p < .05; and
*** p < .01.

aggregate financial conditions and volatility. The results for the three measures of oil price

volatility are in table 5.

The regression controls for macroeconomic fluctuations in financial constraints and id-

iosyncratic volatility. Economy wide financial conditions are controlled for with the excess

bond premium measure of Gilchrist and Zakrajsek (2012), while a broad measure of volatil-

ity is controlled for with the VIX index. Industry fixed effects control for time invariant

differences between industries and average industry item level inflation rate and industrial

production changes are included to control for movements in industry price and production.

The unit of observation is monthly price change dispersion at the 4-digit NAICS level. This

level of industry aggregation includes on average nearly 500 items at the industry month

level, allowing me to construct reasonably precise price change dispersion numbers while

limiting the amount of heterogeneity within an industry. The dependent variable is the

standard deviation of price change conditional on adjustment. Similar results are obtained

using the interquartile range of price changes and are in appendix B.8.

Column 1 shows results for the stochastic volatility of oil prices. Oil price inflation

and volatility are included with a one month lag which reduces the potential endogeneity.

14



The second row shows the coefficient of interest for oil price volatility. The results show

that increases in oil price volatility increase the average producer price change dispersion.

A one standard deviation increase in oil price volatility is 0.022, which implies that the

average industry price change dispersion will increase by 0.005. The unweighted average

price change standard deviation is 0.109; the estimate implies an increase of 4% in price

change dispersion for the average industry. Excess bond premium and the VIX measure of

volatility do not affect price change dispersion in this regression. The fact that the VIX

index does not predict producer price change dispersion shows that oil price volatility is

not simply correlated over time with other measures of volatility but rather has further

explanatory power in producer pricing. Oil price inflation and lagged industry inflation

are positive but insignificant. Bachmann et al. (2013) argue that changes in unforecasted

production can affect the frequency of price change, however changes in industrial production

are negative and insignificant in predicting price change dispersion.

Column 2 shows the regression results with the realized volatility of oil prices, and it

shows that within month volatility of oil prices is also correlated with increased producer

price change standard deviation. Realized volatility of oil prices is on a different scale than

stochastic volatility, and a one standard deviation increase in realized volatility implies an

increase of 0.003 in average price change dispersion. The excess bond premium is positive

and significant which implies an increase in price change dispersion in the producer price

data. This result could be explained by the model of Gilchrist et al. (2015), who argue that

more financially constrained firms are likely to increase prices while financially unconstrained

firms will lower them during periods of financial crisis in order to increase market share.

GARCH volatility results are in column 3, and it shows the same pattern that exists with

stochastic and realized volatility. Periods of high GARCH oil price volatility are related to

increased price change dispersion for producer prices. These regression results show that all

measures of oil price volatility increase producer price change dispersion, and price change

dispersion is related to changes in the underlying volatility of oil prices.

The previous regressions shows that producer price change dispersion is correlated with

oil price volatility over time. However it does not identify how changes in oil price volatility

impact price change dispersion due to potential omitted variables. In order to identify this

relationship I will exploit heterogeneity in oil usage across industries to construct industry

specific oil demand variables.

15



3.3 Industry Specific Oil Volatility

I now construct industry specific oil demand variables in order to identify the effects of

oil volatility on industry level producer price setting behavior. The empirical strategy uses

variation in oil price and volatility interacted with a long run share of oil that represents the

importance of oil in each industry’s cost function. The idea behind the demand variables is

to exploit the heterogeneity in long run oil usage, which is a measure of the importance of

oil prices from the cost channel. Industries that use more oil should respond more strongly

to oil price shocks than industries that are not as reliant on oil. The industry specific

oil demand variables allow me to control for any common shocks over time and any time

invariant differences between industries, which enables identification of oil price volatility

shocks on price setting behavior.

The oil demand variables are similar to those used in Shea (1993), Perotti (2008), or

Nekarda and Ramey (2011) who study the effects of fiscal policy on industries. The Input-

Output tables contain information on the dollar amount of oil used as well as industry pro-

duction. A long run oil usage sensitivity is constructed by averaging over the time dimension

of the data to remove dependence on the current year’s oil price. There is substantial vari-

ation in experiences after an oil volatility shock due to the heterogeneity in oil usage across

industries. An industry that does not use oil would be unlikely to experience any immediate

changes in costs due to oil price volatility changes, while an industry with a large share of

oil will need to adjust prices by a larger amount to reset their optimal price. Constructing

industry specific oil prices variables allows use of industry and time fixed effects, thereby

studying the partial equilibrium effects of an aggregate volatility shock. This partial equi-

librium effect allows me to study the mechanism through which volatility shocks affect price

setting behavior.

Benchmark IO use tables are published every five years at a detailed 6-digit NAICS

industry. The tables from 1997, 2002, and 2007 are used for this study. An industry’s oil

sensitivity in year t is given by

so,j,t =
Nominal Dollars Spent of Oil Input Industry j in Year t

Nominal Dollars Value Added Industry j in Year t
(6)

where j indexes an industry19. This sensitivity to oil usage is motivated by an industry’s oil

share of production. However this measure could be correlated with industry technological

change, due to substitution towards or away from oil due to changes in oil price. Therefore

in order to reduce the short run effects of oil price changes from this sensitivity measure, the

share of oil is averaged over the time dimension of the IO tables:

19The oil producing sector is defined as NAICS 324111, Petroleum Refining.
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Figure 6: Average price change dispersion for high and low oil share industries.
Note: Average price change dispersion for top and bottom 10% of industries in each month. Oil volatility

is the extracted stochastic volatility of oil prices, eσt . Data is demeaned, seasonally adjusted with the X-12

filter, and then presented as a 6 month moving average. The shaded areas represent NBER-dated

recessions.

so,j =
T∑
t=1

so,j,t
T

(7)

Oil demand variables for oil price change and volatility are then constructed by interacting

the long run oil share, so,j, with oil price volatility or oil price inflation20. These oil demand

variables are in the spirit of ‘Bartik’ style measures, an interaction between a predefined

share of oil usage and aggregate changes in oil price or volatility within narrowly defined

manufacturing industries. The idea behind this measure is that global changes in oil price

and volatility differentially impacted industries because of long run oil usage technology.

The sensitivity, so,j, is a directional measure of the degree to which oil price and volatility

movements will affect price setting behavior.

Figure 6 illustrates the identification and previews the main result by comparing the

price change dispersion time series for high and low oil share industries with the stochastic

20Using the pre-sample oil usage from 1997 does not change any results. Full results using this measure
are in appendix B.8.
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volatility of oil prices. I define the high and low oil share sectors as the 10% of industries

with the highest or lowest oil share each period. The correlation between the high oil share

sector average price change dispersion and stochastic oil price volatility is 0.423, while the

correlation between the low oil share sector average price change dispersion and oil price

volatility is only 0.073. This figure suggests that industries that are more oil intensive have

greater price change dispersion during periods of high oil price volatility.

However the correlation between price change dispersion and oil price volatility for high

and low oil share industries does not control for aggregate shocks or cyclical changes in

production by industry. Using the oil demand variables I control for both industry differences

and time variation in common shocks such as aggregate volatility or financial constraints

through the use of time fixed effects. The main regression of interest is the specification:

Yj,t = η ∗ (so,j ∗∆log(P o
t−1)) + λ ∗ (so,j ∗ σt−1) + γ′Xj,t + αj + αt + εjt (8)

where Yj,t is the price change dispersion measure. The coefficient of interest is λ, which is

the marginal effect of an increase in oil price volatility for an industry with oil share so,j.

Xj,t are a vector of control variables that can influence inflation dispersion . Controls include

industrial production growth and industry inflation. Identification of volatility comes from

variation across time within an industry for a given so,j. The main results using the stochastic

volatility measure are in table 6. GARCH volatility and realized volatility oil price measure

results are in appendix B.8. They have similar implications.

The identifying assumption is that the interaction of oil price volatility and oil share is

not correlated with unobserved shocks to an individual industry. Separate identification of

oil price and oil volatility comes from the fact that oil prices and volatility do not move

together. The exogeneity of the variable hinges on each industry being a price taker in the

global oil market, as well as the degree to which oil usage is irreversible in the short run.

However oil is likely to be characterized by large amounts of specific capital or irreversible

investment as a material input or energy source which make it difficult to quickly substitute

away from.

The regression results show that after controlling for differences across time and between

industries, an increase in oil price volatility increases price change dispersion for industries

that are more oil dependent. Changes in industrial production are negatively correlated with

price change dispersion in aggregate data, but at the industry level I find no relationship

between the two measures. Industry specific oil price inflation has no estimated effect on

price change dispersion.

Oil price volatility more than doubled from 0.071 to 0.144 between December 2007 and

September 2008. The associated change in the average price change standard deviation was
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Dependent Variable: Standard Deviation of Price Change

(1) (2) (3) (4)
so,j ∗∆log(P o

t−1) 0.086 0.078 -0.002 0.022
(0.096) (0.097) (0.086) (0.082)

so,j ∗ σt−1 3.033∗∗∗ 3.059∗∗∗ 3.088∗∗∗ 2.928∗∗∗

(0.839) (0.851) (0.946) (0.891)
πj,t 0.081 0.085 0.086

(0.116) (0.112) (0.110)
∆IPj,t 0.001 -0.002

(0.014) (0.015)
PriceDispj,t−1 0.066∗∗∗

(0.016)
so ∗ σt−1 0.048∗∗∗ 0.048∗∗∗ 0.048∗∗∗ 0.046∗∗∗

(0.013) (0.013) (0.015) (0.014)
Time & Industry FE Yes Yes Yes Yes
Number of Industries 81 81 63 63
N 13,606 13,606 10,946 10,939

Table 6: Industry Specific Oil Demand Variables Regression

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. The dependent variable is the
standard deviation of price change of a 4-digit NAICS industry in the manufacturing sector. All industries
within the oil producing NAICS 324 sector are excluded. so,j ∗∆log(P ot−1) and so,j ∗ σt−1 are the industry
specific oil demand variables using monthly WTI real price of oil. πj,t is the average item level inflation rate
for industry j. σt is the extracted stochastic volatility measure of oil price volatility. PriceDispj,t−1 is the
lagged industry price change dispersion. so ∗ σt−1 is the transformed coefficient for a marginal change in oil
price volatility for an average industry with oil share of 0.016. Robust asymptotic standard errors reported
in parentheses are clustered at the industry level: * p < .10; ** p < .05; and *** p < .01.

from 0.125 to 0.133. The estimate from column 2 implies that oil price volatility could

explain 44% of the average observed price change dispersion increase after controlling for oil

price inflation and other observables.

Frequency of price change is also an important component of aggregate price flexibility

and therefore monetary policy effectiveness. I find no evidence that price change frequency

reacts to changes in oil price volatility. The full results in appendix B.8.

It has been argued by Gilchrist et al. (2015) that financial frictions impacted prices

differentially during the financial crisis in 2008. Given that this is the same period when

the largest movements in oil price volatility occurred, an indicator variable is included to

examine if the large changes in oil prices and volatility had differential effects during the

financial crisis period of 2008. Column 1 of Table 7 shows that even with the doubling of

oil volatility during 2008, oil price volatility has the same effect on price change dispersion

within and outside of the crisis period.

As an additional robustness exercise, column 2 shows the results using a 3-digit NAICS
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Dependent Variable: Standard Deviation of Price Change

(1) (2) (3) (4) (5) (6)
so,j ∗∆log(P o

t−1) ∗ [Crisis = 0] 0.131
(0.085)

so,j ∗∆log(P o
t−1) ∗ [Crisis = 1] -0.171

(0.360)
so,j ∗ σt−1 ∗ [Crisis = 0] 2.763∗∗∗

(0.866)
so,j ∗ σt−1 ∗ [Crisis = 1] 3.000∗∗∗

(0.963)
so,j ∗∆log(P o

t−1) -0.025 0.014 -0.052 0.093 -0.009
(0.206) (0.092) (0.115) (0.130) (0.095)

so,j ∗ σt−1 2.551∗∗ 1.766∗∗∗ 2.676∗∗∗ 5.381∗∗∗ 1.983∗∗∗

(1.007) (0.586) (0.980) (1.356) (0.735)
πj,t 0.081 -0.155 0.080 0.085 0.143 0.074

(0.117) (0.120) (0.117) (0.116) (0.195) (0.118)
Time & Industry FE Yes Yes Yes Yes Yes Yes
Number of Industries 81 20 81 81 80 81
N 13,606 3,176 13,606 13,606 7,543 13,606

Table 7: Robustness Analysis

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. Columns (1) and (2) use the stochastic
volatility measure of oil price volatility. Crisis year indicator is defined as 1 during 2008 and 0 otherwise.
This is the same crisis definition timing as Gilchrist et al. (2015). Column (2) defines an industry at the 3-
digit NAICS level. Column (3) uses the realized volatility measure of oil price volatility with 4-digit NAICS
industries. Column (4) uses the GARCH measure of oil price volatility with 4-digit NAICS industries.
Column (5) uses the stochastic volatility measure of oil price volatility with the 4-digit NAICS industries
but restricts the sample from 1998:M1 to 2007:M12. Column (6) uses Brent Crude oil prices and stochastic
volatility with 4-digit NAICS industries. Robust asymptotic standard errors reported in parentheses are
clustered at the industry level: * p < .10; ** p < .05; and *** p < .01.

classification of industry and the stochastic volatility measure of oil price volatility. The

results show that increased oil price volatility increases price change dispersion. The specifi-

cations in columns 3 and 4 use GARCH and realized volatility of oil prices respectively, and

both imply statistically significant increases in the standard deviation of price changes.

Column 5 shows the baseline specification using stochastic volatility of oil prices but

restricts the sample to the 1998 through 2007 period, before the financial crisis and the zero

lower bound on interest rates. Column 6 uses the Brent Crude oil price and it’s stochastic

volatility rather than the WTI oil price. These results show that greater oil price volatil-

ity implies higher price change dispersion both during the restricted sample, and using an

alternative oil price.
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Dependent Variable: Standard Deviation of Price Change

(1) (2) (3) (4)
so,j ∗∆log(P o

t−1) 0.016 0.017 0.056 0.056
(0.058) (0.058) (0.088) (0.088)

so,j ∗ σt−1 1.317∗∗∗ 1.304∗∗∗ 1.567∗∗∗ 1.563∗∗∗

(0.270) (0.269) (0.491) (0.489)
πj,t−1 -0.104∗∗∗ -0.106∗∗∗

(0.017) (0.023)
Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Number of Firms 20,162 20,162 4,721 4,721
N 202,938 202,938 50,930 50,930

Table 8: Producer Price Change Dispersion and Macroeconomic Shocks

Note: Sample period: 2005:M1 to 2014:M12 at a monthly frequency. Columns (1) and (2) include all
firm-month observations with at least two price changes, while columns (3) and (4) restrict the sample to
be firm-month observations with at least five price changes. Robust asymptotic standard errors reported in
parentheses are clustered at the firm level: * p < .10; ** p < .05; and *** p < .01.

3.4 Within Firm Price Change Dispersion

A possible identification concern with the main industry regression is that there is dif-

ferential oil usage across firms within an industry. As a robustness exercise to address this

concern, I include firm level fixed effects and identify the effect of oil price volatility within

a firm across industries. Item level price change dispersion is constructed at the firm level

over 2005-2014; that is the standard deviation of price changes within a month for a firm

indexed by i21. This allows me to control for time invariant firm specific differences using

firm fixed effects, such as differences in oil share within an industry. Specifically I estimate

the following regression:

Yi,j,t = η ∗ (so,j ∗∆log(P o
t−1)) + λ ∗ (so,j ∗ σt−1) + γ′Xj,t + αi + αt + εijt (9)

The regression is linking item level price change dispersion within an firm to industry specific

changes in oil prices and oil volatility while controlling for industry inflation. Firm and time

fixed effects control for differences between firms and common aggregate shocks over time.

The coefficient λ is the average firm level response to oil price volatility for an industry with

an oil share of so,j. Results are in table 8.

The results show that using only within firm variation, price change dispersion increases

more within oil intensive industries during periods of high oil price volatility. Average indus-

21Firm level analysis is conducted only over 2005-2014 due to a change in firm level identification in 2005.
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try level price change dispersion is greater than average firm level price change dispersion,

causing the decrease in coefficient magnitude22. These regressions show that the relation-

ship between oil price volatility and price change dispersion is robust to controlling for time

invariant firm level heterogeneity.

The empirical analysis provides evidence that oil price volatility, a common cost volatil-

ity shock, is positively related to price change dispersion at the industry and firm level.

Industries that use more oil exhibit greater price change dispersion in response to high oil

volatility. Additionally, the average price change dispersion of a firm within an industry with

high oil usage is greater than the average firm within a low oil usage industry. This suggests

that it is not due to heterogeneity within industries, but rather, is due to a common response

to the aggregate shock.

Price change dispersion is a measure of aggregate price level flexibility, with greater price

change dispersion implying less flexibility. The next section will examine the relationship be-

tween oil price volatility and price change dispersion in a state dependent general equilibrium

model of price setting.

4 Menu Cost Model

This section presents a generalized menu cost model of price setting in order to quantify

the effects of volatility on monetary non-neutrality. The baseline quantitative menu cost

model follows Golosov and Lucas (2007) with a fixed menu cost. It includes the leptokurtic

productivity shocks as in Midrigan (2010) and a small probability of a free price change such

as in Nakamura and Steinsson (2010). Oil is modeled as a non-produced input in the firm

production function with an exogenous real price as in Blanchard and Gali (2008), and a

time varying second moment to represent volatility shocks.

In the fixed menu cost model an oil price volatility shock predicts lower price change

dispersion on impact of an oil price volatility shock due to the selection effect of the firms

which choose to change prices. The selection effect states that the prices that are most likely

to change are those that are furthest from their optimal price. The common oil price shock

pushes more price changes in one direction, which decreases price change dispersion.

The generalized price setting model nests a random menu cost model, which reduces the

selection effect by issuing firms a random heterogeneous menu cost each period. The random

menu costs imply firms have a differential likelihood of changing prices based on the menu

cost they receive. This mechanism alters the mix of price changes and enables the model to

22The average firm level non-zero price change standard deviation in the sample is 0.046 while the average
industry level non-zero price change standard deviation is 0.112.
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match the positive relationship between the common cost volatility shock and price change

dispersion.

Monetary policy effectiveness is then examined during periods of high and low oil price

volatility. In the counterfactual fixed menu cost model there is a greater tradeoff between

output and inflation when oil price volatility is high, due to increased price flexibility. The

random menu cost model, which matches the positive empirical relationship between oil

price volatility and price change dispersion, implies near constant monetary non-neutrality

in response to changes in aggregate cost shock volatility.

4.1 Households

A model of price setting with first and second moment shocks to oil prices is now pre-

sented. Households maximize current expected utility, given by

Et

∞∑
τ=0

βt
[
log(Ct+τ )− ωLt+τ

]
(10)

They consume a continuum of differentiated products indexed by z. The composite con-

sumption good Ct is the Dixit-Stiglitz aggregate of these differentiated goods,

Ct =

[ ∫ 1

0

ct(z)
θ−1
θ dz

] θ
θ−1

(11)

where θ is the elasticity of substitution between the differentiated goods.

Households decide each period how much to consume of each differentiated good. For

any given level of spending in time t, households choose the consumption bundle that yields

the highest level of the consumption index Ct. This implies that household demand for

differentiated good z is

ct(z) = Ct

(
pt(z)

Pt

)−θ
(12)

where pt(z) is the price of good z at time t and Pt is the price level in period t, calculated as

Pt =

[ ∫ 1

0

pt(z)1−θdz

] 1
1−θ

(13)

A complete set of Arrow-Debreu securities is traded, which implies that the budget

constraint of the household is written as

PtCt + Et[Dt,t+1Bt+1] ≤ Bt +WtLt +

∫ 1

0

πt(z)dz + Tt (14)
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where Bt+1 is a random variable that denotes state contingent payoffs of the portfolio of

financial assets purchased by the household in period t and sold in period t+1. Dt+1 is the

unique stochastic discount factor that prices the payoffs, Wt is the wage rate of the economy

at time t, πt(z) is the profit of firm z in period t. Tt are lump sum government transfers.

A no ponzi game condition is assumed so that household financial wealth is always large

enough so that future income is high enough to avoid default.

The first order conditions of the household maximization problem are

Dt,t+1 = β(
Ct+1

Ct
)
Pt
Pt+1

(15)

Wt

Pt
= ωLtCt (16)

where equation (15) describes the relationship between asset prices and consumption, and

(16) describes labor supply.

4.2 Firms

In the model there are a continuum of firms indexed by z. The production function of

firm z is Leontief in labor and oil to describe the lack of substitutability between them in

the short run.

yt(z) = At(z)min{Lt(z),
1

so
Ot(z)} (17)

where Lt(z) is labor rented from households and Ot(z) is the quantity of oil used to pro-

duce output. Oil usage is likely to be have large amounts of specific capital or irreversible

investment in the short run, which motivates the Leontief structure.

Firm z maximizes the present discounted value of future profits

Et

∞∑
τ=0

Dt,t+τπt+τ (z) (18)

where profits are given by:

πt(z) = pt(z)yt(z)−WtLt(z)−QtOt(z)− χt(z)WtIt(z), χt(z)
iid∼ F (χ) (19)

andQt is the nominal price of oil. It(z) is an indicator function equal to one if the firm changes

its price and equal to zero otherwise. χt(z) is a menu cost drawn from the distribution F (χ).

In the fixed menu cost model, F (χ) is a degenerate distribution which implies a single menu
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cost χ as in the model of Golosov and Lucas (2007). The random menu cost model uses a

continuous distribution where menu costs are drawn independently each period. The next

section will further explain this feature. The final term indicates that firms must hire an

extra χt(z) units of labor if they decide to change prices with probability 1 − α, or may

change their price for free with probability α23. A small probability of receiving a free price

change enables the model to generate small price changes.

Total demand for good z is given by:

yt(z) = Yt

(
pt(z)

Pt

)−θ
(20)

The firm problem is to maximize profits in (19) subject to its production function (17),

demand for its final good product (20), and the behavior of aggregate variables.

Firms supply all goods demanded at a given price. Cost minimization at a given price

implies that firms keep a constant proportion of oil input to labor input:

1

so
Ot(z) = Lt(z) (21)

The log of firm productivity follows a mean reverting process with leptokurtic shocks as

in Gertler and Leahy (2008) and Midrigan (2011):

logAt(z) =

ρalogAt−1(z) + σaεt(z) with probability pa

logAt−1(z) with probability 1− pa,
(22)

where εt(z) ∼ N(0,1).

Nominal aggregate spending follows a random walk with drift:

log(St) = µ+ log(St−1) + σsηt (23)

where St = PtCt and ηt ∼ N(0,1). This is a standard way to model nominal aggregate

spending in a menu cost model.

The oil price process follows Blanchard and Gali (2008), by assuming that oil is a non-

produced input purchased in a world market at real price P o
t . The log of P o

t follows an AR(1)

process with time varying standard deviation:

logP o
t = ρplogP

o
t−1 + eσtνt (24)

where νt(z) ∼ N(0,1).

23This is a reduced form mechanism representing multiproduct firms in Midrigan (2010).
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To model time varying volatility of oil prices, it is assumed that the standard deviation

of oil prices follows a mean reverting AR(1) process as estimated in section 2.3:

σt = (1− ρσ)σ + ρσσt−1 + φνσ,t (25)

where νσ,t(z) ∼ N(0,1) and σ is the unconditional mean of σt.

The state space of the firms problem is an infinite dimensional object because the evo-

lution of the aggregate price level depends on the joint distribution of all firms’ prices,

productivity levels, and menu costs. It is assumed that firms only perceive the evolution of

the price level as a function of a small number of moments of the distribution as in Krusell

and Smith (1998). In particular, I assume that firms use a forecasting rule of the form:

log(
Pt
St

) = γ0 +γ1logP
o
t +γ2σt+γ3log(

Pt−1

St
)+γ4(log(

Pt−1

St
)∗ logP o

t )+γ5(log(
Pt−1

St
)∗σt) (26)

The accuracy of the rule is checked using the maximum Den Haan statistic in a dynamic

forecast24.

Using equations (15), (16), (17), (19), (20), (21), (26) and market clearing I am able to

write the firm problem recursively as:

V
(
At(z),

pt−1(z)

St
, P o

t , σt, χt(z), ψt
)

= max
pt(z)

{
V N
(
At(z),

pt−1(z)

St
, P o

t , σt, ψt
)
, V A

(
At(z), P o

t , σt, χt(z), ψt
)}

(27)

where ψt is the Krusell-Smith aggregate state describing the joint distribution of prices,

productivities, and menu costs. πRt (z) is firm z’s real profits in period t, and DR
t,t+1 is the

real stochastic discount factor between periods t and t+1. Nominal variables have been

normalized by current aggregate nominal spending in the economy to bound the state space.

V N and V A are the values of not adjusting and adjusting the current period’s relative price.

The value of not adjusting is given by:

V N
(
At(z),

pt−1(z)

St
, P o

t , σt, ψt
)

= πRt (
pt−1(z)

St
, At(z), P o

t , σt, ψt)

+Et
[
DR
t,t+1V

(
At+1(z),

pt−1(z)

St+1

, P o
t+1, σt+1, χt(z), ψt+1

)] (28)

while the value of adjusting the current price is given by:

24Adding price change dispersion to the forecasting rule does not qualitatively affect the model predictions.
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Parameter Value
θ Elasticity of Substitution 4.0

β Discount Factor (0.96)
1
12

µ Growth of Nominal Spending 0.002
σs Standard Deviation of Nominal Spending 0.0037
ρa Idiosyncratic TFP Persistence 0.70
so Oil Share of Production 0.016
ρo Oil Price Persistence 0.99
σ Oil Price Standard Deviation 0.07
ρσ Oil Volatility Persistence 0.88
φ Oil Volatility Standard Deviation 0.14

Table 9: Common Calibration Parameters

V A
(
At(z), P o

t , σt, χt(z), ψt
)

= −χt(z)
Wt

Pt
+ πRt (

pt(z)

St
, At(z), P o

t , σt, ψt)

+Et
[
DR
t,t+1V

(
At+1(z),

pt(z)

St+1

, P o
t+1, σt+1, χt(z), ψt+1

)] (29)

The model is solved by discretization and simulated using the non-stochastic simulation

method of Young (2010). Full details on the solution method are available in the appendix

section A.2.

4.3 Calibration

There are three sets of parameters that need to be calibrated in the model. The first set

are household parameters and aggregate shocks that are common to both the fixed menu

cost and random menu cost versions of the model. These parameters are standard menu cost

models. It is a monthly model so the discount rate is set to β = (0.96)
1
12 . Household utility

is assumed to be log utility in consumption and linear disutility of labor. The elasticity of

substitution is set to θ = 4 following Nakamura and Steinsson (2010)25. The average oil share

of production is set to so = 0.016, and matches the time averaged share of production from

the IO tables from 1997, 2002, and 2007. The nominal shock process calibrates µ = 0.002 to

match the difference between the mean growth rate of nominal GDP and the mean growth

rate of real GDP over 1998 to 2012, and σs = .0037 to match the standard deviation of

nominal GDP growth over the same period. They are given in table 9.

The second set of parameters are for the oil price and oil price volatility processes esti-

mated in section 2.3. The oil price persistence parameter is ρv = 0.99, oil price standard

25Other papers set higher values such as 6.8 in Vavra (2014) or 7 in Golosov and Lucas (2007), which gives
lower values of the mark up.

27



deviation σ = 0.07, oil price volatility persistence ρσ = 0.88, and oil price volatility standard

deviation is φ = 0.14. These numbers imply a high persistence for oil price and relatively

low persistence for oil price volatility.

The final set of parameters are related to the specific price setting model. These are

the persistence and standard deviation of idiosyncratic productivity shocks ρ and σa, the

probability of an idiosyncratic productivity shock pa, the cost of changing a price χt(z), and

the probability of a free price change α. These five parameters will change depending on

the particular menu cost distribution assumption. Both menu cost models calibrate these

parameters to match some salient price setting statistics in the total PPI data.

I will now discuss the calibration for the fixed menu cost model. The persistence of

idiosyncratic productivity is set to ρ = 0.7, which matches Nakamura and Steinsson (2008).

Then the remaining four parameters χ, σa, pa, and α are set to target four moments of

the PPI data. The moments are frequency of price change, average size of price change,

standard deviation of price changes, and the fraction of small price changes26. This model

has a single point mass in the menu cost distribution that determine the value of the fixed

menu cost and is set to χ = 0.20, which implies that firms must pay 20.0% of their monthly

revenues to change a price. However a fraction α = 0.125 of firms receive a free opportunity

to change prices. This parameter is identified by the fraction of small price changes27. The

volatility and probability of receiving an idiosyncratic productivity shock determines the

average size and dispersion of price changes. The standard deviation of shocks is set to 0.105

and the probability of receiving a shock is set to 0.4. This enables the model to match a

large absolute average size of price changes and a large dispersion of price changes.

The distribution from which random menu costs are drawn is now explained. The random

menu costs are drawn from a transformation of an exponential distribution. This particular

model specification is taken from Luo and Villar (2015). Specifically, random menu costs are

drawn that are independent over time and across firms from the process:

χt(z) =

0 with probability α

χ̃ with probability 1− α,
where F (k) = P (χ̃ ≤ k) = 1− e−λkξ (30)

The parameter λ determines the average value of the menu cost that is drawn, while ξ

determines the curvature of the distribution. Higher values of ξ imply that a firm is less

likely to draw very small or very large menu costs. These two parameters are calibrated along

26A small price changes is defined as |dpi,t| < 0.01.
27The pricing parameters imply that total adjustment costs in the economy are χ∗(Freq−α)∗ θ−1

θ = 0.42%
of revenues per month. Estimates from Levy et al. (1997) suggest that menu costs are 0.7% of revenues,
while Stella (2014) estimates menu costs to be bounded between 0.22% and 0.59%.
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Price Setting Statistic Data MC Random MC
Frequency 0.154 0.153 0.153
Average Size of Price Change 0.071 0.096 0.091
Fraction Small Price Changes 0.215 0.143 0.152
Standard Deviation Price Changes 0.125 0.125 0.125
Fraction Price Increases 0.602 0.651 0.660

Table 10: Model Moments

with the other four parameters to match the same price setting statistics. In particular, λ

= 1.49 and ξ = 0.25. This implies a relatively high average menu cost, and a distribution

that has fat tails. There is substantial probability that firms draw very low or very high

menu costs. The persistence of idiosyncratic productivity shocks remains set to 0.7, and the

probability of a productivity shock is 0.4. The volatility of idiosyncratic productivity shocks

is set to 0.146 while the probability of a free price change is set to 0.01.

4.4 Model Results

The model moments are listed in table 10. Both models match the frequency of price

change as well as the dispersion of price changes. The fraction of price changes that are

small is under predicted in both models, this is due to the large idiosyncratic shocks that are

needed to match the dispersion of price changes. The average size of price changes is slightly

too high, but it allows the models to match the standard deviation of price changes. The

low probability of receiving a productivity shock helps the models increase the dispersion of

price changes relative to a Golosov and Lucas menu cost model. Due to the large oil price

shocks in the model, if the probability of a productivity shock is set too low then all price

changes will be dominated by changes in the oil price. In the random menu cost model the

average size of price changes is closer to the data, but this is at the cost of too many small

price changes. Both models have a fraction of price increases that is close to the data.

In order to test the predictions from the model against the empirical results, I compute

the price response on impact of an oil price volatility shock. This is a one period impulse

response to an increase in oil price volatility. For the fixed menu cost model calibration, a

one standard deviation increase in oil price volatility decreases price change dispersion by

6.7%. The volatility effect dominates the real options effect, increasing the frequency of

price adjustment. The increase in oil price volatility creates a larger realized oil price, which

increases the gap between a firm’s current price and optimal price. The common volatility

shock pushes more price changes in one direction, decreasing price change dispersion. The

strong selection effect is illustrated in an example in figure 7. There is an increase in the
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Figure 7: Oil Price Volatility Shock: Fixed Menu Cost Model Price Change Distribution

so ∆ Price Dispersion ∆ Frequency
0.010 -3.84% 10.34%
0.016 -6.66% 19.40%
0.025 -9.54% 36.76%
0.050 -9.65% 85.63%

Table 11: Menu Cost Comparative Static Exercise

directional synchronization of price changes that does not occur during an increase in idiosyn-

cratic volatility. During periods of increased oil price volatility, more price changes move in

the direction of the larger oil price shock, causing a decrease in price change dispersion.

The selection effect of price changes becomes more apparent during a comparative static

exercise. Table 11 shows the response of price change dispersion on impact to an oil price

volatility shock. The oil share of production changes while holding all other parameters

fixed from the original calibration. As the oil share of production increases, the drop in

price change dispersion becomes larger. This is due to both an extensive and intensive

change in item level inflation. Oil price changes become more important for firms, making

firms more likely to change prices as well as by a larger amount. All price changes move

in the direction of the oil price change, increasing the synchronization of price changes and

decreasing inflation dispersion.

The random menu cost model is able to reduce the selection effect of price changes, and

match the empirical relationship between price change dispersion and oil price volatility.

In this model, the menu costs are drawn independently across firms and over time. This

mechanism implies that prices are now a function of the random menu cost draw as well
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Figure 8: Oil Price Volatility Shock: Random Menu Cost Price Change Distribution

as the state of the economy. Random menu costs attenuate the price change reaction to a

common shock and change the mix of price changes.

The evolution of the price change distribution due to an oil price volatility shock is

illustrated in figure 8. Due to the random menu costs that firms draw, the selection of

prices that will change depends less on the common shock as in the fixed menu cost model,

but also on the random menu cost that is drawn by each firm. During an increase in

oil price volatility, the model is buffeted by larger realized oil price shocks. This pushes

some price changes that are primarily responding to the oil price to be more extreme. But

some price changes will occur simply due to a low menu cost draw, and will be relatively

small in reaction to idiosyncratic shocks. The overall effect is to create a more disperse price

change distribution during periods of high oil price volatility, with a fraction of price changes

responding to the oil price volatility shock but substantial mass remaining in the middle of

the price change distribution. This implies that the random menu cost model matches the

empirical relationship between price change dispersion and oil price volatility28.

A comparative static exercise is performed in table 12 for the random menu cost model.

Only the share of oil is varied from the original random menu cost calibration. The table

reports the increase in price change dispersion on impact of an oil price volatility shock as

the oil share of production increases. For low levels of oil usage, an oil price volatility shock

gives small increases in price change dispersion. At the oil share of production of 1.6%, an oil

price volatility shock increases price change dispersion by 0.83%. As oil share of production

increases to 2.5%, a one standard deviation increase in oil price volatility increases price

28Further evidence in favor of random menu costs is that it dampens the response of frequency to oil price
volatility. I found no evidence that price change frequency responds to oil price volatility shocks.
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so ∆ Price Dispersion ∆ Frequency
0.010 0.57% 2.32%
0.016 0.83% 3.46%
0.025 1.36% 5.21%
0.050 7.18% 10.18%

Table 12: Random Menu Cost Model Comparative Static Exercise

change dispersion by 1.36%. This comparative static exercise shows that industries that use

more oil have greater price change dispersion during a period of high oil price volatility.

The model results show that a standard state dependent pricing model with a fixed menu

cost implies decreased price change dispersion on impact of an aggregate volatility shock.

Larger shocks cause prices to respond in the same direction, decreasing the dispersion of

the price change distribution. Introducing random menu costs enables the model to match

the effects of aggregate volatility on price setting behavior, by attenuating the reaction to a

common cost shock and changing the mix of prices that adjust.

5 Implications for Monetary Policy Effectiveness

The modeling section has shown that a random menu cost model is able to match the

empirical relationship between oil price volatility and price change dispersion. I will now

study how changes in oil price volatility affect the ability of monetary policy to stimulate

output.

I shock the model with a permanent increase of 0.002 to log nominal output in order to

assess if the tradeoff between output and inflation is a function of the aggregate volatility

in the economy. This size shock amounts to a one month doubling of the nominal output

growth rate. The response of consumption and inflation on impact is shown in Table 13 for

periods of high and fixed oil price volatility. In the first row is the impact on consumption

in the ergodic state of the economy, while the second row shows the same impact during a

period of high volatility29. In the random menu cost model, which is able to generate the

increase in price change dispersion due to an increase in oil price volatility, 52.4% of the

doubling of log nominal output translates into an increase in output. The other 47.6% of

the increase goes into inflation. When the model is shocked with a one standard deviation

increase in oil price volatility and a 0.002 permanent increase in log nominal output, 52.2%

of the increase in nominal output goes into output while 47.8% goes into the increase in price

29High oil price volatility is defined as a period with a one standard deviation positive shock to oil price
volatility.
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Random Menu Cost Model Output IRF on Impact Price IRF on Impact
Baseline Volatility 52.4% 47.6%
High Volatility 52.2% 47.8%
Fixed Menu Cost Model
Baseline Volatility 48.0% 52.0%
High Volatility 44.1% 55.9%

Table 13: Inflation-Output Stabilization Tradeoff

level.

I conduct the same numerical exercise in the counterfactual fixed menu cost model. In

this model, only 48.0% of the increase in log nominal output goes into consumption on

impact in the ergodic state of the economy. During a period of increased oil price volatility,

the percentage of the log nominal output that goes into consumption drops to 44.1%.

These results show that increases in the volatility of an aggregate cost shock do not

substantially increase the trade off between output stabilization and inflation. During periods

of high oil price volatility, there is a drop in the efficacy of nominal stimulus to increase

consumption of less than 1%. Contrasting with this result are the implications of the fixed

menu cost model, where 8.2% less of the increase in nominal output goes into consumption.

The large decrease in monetary policy effectiveness is primarily due to the increase in the

extensive margin of price adjustment. All prices that adjust move to their optimal price, but

more prices are adjusting due to the larger oil price shocks. The increased price adjustment

causes more of the nominal output change to be incorporated into the aggregate price level.

Price change dispersion is a key moment of the price change distribution for measur-

ing monetary non-neutrality. Midrigan (2011) shows that increased price change disper-

sion increases monetary policy effectiveness. In testing how monetary policy effectiveness

responds to changes in volatility, price change dispersion is therefore a key moment to ex-

amine. Matching the relationship between oil price volatility and price change dispersion in

a state dependent model implies that monetary policy effectiveness is nearly time invariant

in response to changes in volatility.

6 Discussion

Another strand of the price setting literature asks how informational rigidities affect price

setting behavior. A noisy information processing model, such as that used by Drenik and

Perez (2016), would suggest that as the volatility of the common oil price shock increases,

firms would put more weight on their idiosyncratic shocks. This mechanism would increase
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price change dispersion during periods of high oil price volatility by decreasing the importance

of the common cost shock. However, oil prices are easily and accurately observable suggesting

this is not an important channel for the impact of oil price volatility on price setting behavior.

Rational inattention type models would in general generate the counterfactual results for

price change dispersion like the fixed menu cost model. If volatility of an aggregate variable

increases, firms optimally allocate more attention to the aggregate shock. This makes the

shock more important, and causes firms to put more weight more on the common shock.

This is argued in a general context by Menkulasi (2009) and a price setting context by Zhang

(2016). In a context without changes in volatility, Mackowiak and Wiederholt (2009) argue

that price setters pay more attention to sectoral shocks than aggregate shocks because they

are more volatile on average.

7 Conclusion

This paper argues that changes in aggregate volatility do not substantially reduce mon-

etary policy effectiveness. I do this by showing that the average industry price change

dispersion is greater during periods of high oil price volatility. Then by exploiting the het-

erogeneity across industries in oil usage, I show that the increase in price change dispersion

is larger for sectors with more oil usage. In order to match this key empirical relationship,

I introduce random and heterogeneous menu costs. This mechanism attenuates the price

reaction to a common volatility shock and increases price change dispersion during periods

of high volatility.

My analysis of the effects of common volatility shocks on price setting behavior can be

applied beyond oil price volatility. Policy uncertainty, such as changes in the volatility of

fiscal or taxation plans, is another source of time varying volatility to a common shock that

can affect prices. Exchange rate volatility and global demand volatility are other examples

of common volatility shocks that affect price setting behavior. Does increased monetary

policy volatility cause price changes to be more disperse and alter the monetary authority’s

ability to be effective? In particular, did the effects of nominal stimulus change during 1979

to 1982? During this period the FOMC targeted the quantity of money rather than a federal

funds rate, which increased the observed volatility of the federal funds rate.

The tradeoff between output stabilization and inflation is nearly time invariant in re-

sponse to changes in aggregate volatility, suggesting that policy makers need to take into

account the source of volatility. If policy makers increase nominal stimulus more strongly be-

cause they believe effectiveness is dampened during periods of increased aggregate volatility,

it would be an overreaction and induce unnecessary inflation.
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A Model Appendix

A.1 Profit Function

This section shows how to write the profit function in terms of At(z), Pt−1

St
, P o

t , and σt.

To write the firm flow profits in real terms, I divide by Pt.

πRt (z) =
(pt(z)

Pt

)
yt(z)− Wt

Pt
Lt(z)− P o

t

Pt
Ot(z)− χt(z)

Wt

Pt
It(z) (31)

Then using equation (21) I substitute out for Ot(z) which gives after simplification

πRt (z) =
(pt(z)

Pt

)
yt(z)− Wt + soP

o
t

Pt
Lt(z)− χt(z)

Wt

Pt
It(z) (32)

After using firm cost minimization to write the production function as yt(z) = At(z)Lt(z),

I substitute out for labor Lt(z).

πRt (z) =
(pt(z)

Pt

)
yt(z)−

(Wt + soP
o
t

Pt

) yt(z)

At(z)
− χt(z)

Wt

Pt
It(z) (33)

Now I substitute in the firm’s demand curve (20) and labor supply (16) to give

πRt (z) =
(pt(z)

Pt

)1−θ
Yt −

1

At(z)
Yt

(pt(z)

Pt

)−θ(
ωCt + so

P o
t

Pt

)
− χt(z)(ωCt)It(z) (34)

Lastly, the aggregate resource constraint implies that Yt = Ct. This gives the equation

πRt (z) =
(pt(z)

Pt

)1−θ
Ct −

1

At(z)
Ct

(pt(z)

Pt

)−θ(
ωCt + so

P o
t

Pt

)
− χt(z)(ωCt)It(z) (35)

Thus I am able to rewrite flow profits as a function of
(
At(z), pt−1(z)

Pt
, P o

t , σt
)
.

To simplify notation, I can write

πRt (z) =
(pt(z)

Pt
− 1

At(z)

Wt + soP
o
t

Pt

)(pt(z)

Pt

)−θ
Ct − χt(z)(ωCt)It(z) (36)

I need to write firm profits as a function of pt
St

in order to bound the state space. To do

this, first note that from equation (26) I can write Pt
St

as

Pt
St

= e
γ0+γ1logP ot +γ2σt+γ3log(

Pt−1
St

)+γ4(log(
Pt−1
St

)∗logP ot )+γ5(log(
Pt−1
St

)∗σt) (37)

and I can write Ct as
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Ct = e
−
(
γ0+γ1logP ot +γ2σt+γ3log(

Pt−1
St

)+γ4(log(
Pt−1
St

)∗logP ot )+γ5(log(
Pt−1
St

)∗σt)
)

(38)

Then I take firm profits, multiply and divide by St, and replace Ct = St
Pt

.

πRt (z) =
( pt(z)

St
Pt
St

− 1

At(z)

Wt + soP
o
t

Pt

)( pt(z)
St
Pt
St

)−θSt
Pt
− χt(z)(ω

St
Pt

)It(z) (39)

then use (16) to replace the real wage in terms of consumption.

πRt (z) =
( pt(z)

St
Pt
St

− 1

At(z)
(ωCt + soP

o
t )
)( pt(z)

St
Pt
St

)−θSt
Pt
− χt(z)(ω

St
Pt

)It(z) (40)

Then I replace Pt
St

and Ct with the expressions from the law of motion.

πRt (z) =
(pt(z)

St
e−(Θ) − 1

At(z)
(ωe−(Θ) + soP

o
t )
)(pt(z)

St
e−(Θ)

)−θ
(e−(Θ))− χt(z)(ωe−(Θ))It(z)

(41)

where Θ is the expression for the law of motion of Pt
St

. Rearranging gives

πRt (z) =
(pt(z)

St
e−(Θ) − 1

At(z)
(ωe−(Θ) + soP

o
t

)(pt(z)

St

)−θ
(e(Θ))θ−1 − χt(z)(ωe−(Θ))It(z) (42)

which is the value function written in terms of
(
At(z), pt−1(z)

St
, P o

t , σt
)
. I also need to

rewrite the stochastic discount factor as

DR
t,t+1 = β

Ct
Ct+1

= β
e
−
(
γ0+γ1logP ot +γ2σt+γ3log(

Pt−1
St

)+γ4(log(
Pt−1
St

)∗logP ot )+γ5(log(
Pt−1
St

)∗σt)
)

e
−
(
γ0+γ1logP ot+1+γ2σt+1+γ3log(

Pt
St+1

)+γ4(log(
Pt
St+1

)∗logP ot+1)+γ5(log(
Pt
St+1

)∗σt+1)
)
(43)

where expectations can be formed by using the law of motions for P o
t , σt, St.

A.2 Model Solution

The recursive problem is solved on a discretized grid using value function iteration.

Knotek and Terry (2008) argue in favor of discretization over colocation in state depen-

dent pricing models due to robustness. The productivity grid is discretized using 21 points,

the real price grid has 171 points, oil price has 15 grid points, and oil price volatility has 5

points. Expectations must be taken over the monetary growth rate and are discretized using
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7 points, while the Krusell and Smith aggregate state is discretized with 8 points.

The model is simulated using the non-stochastic simulation method of Young (2010).

Non-stochastic simulation tracks a histogram of firm states rather than a large number of

firms which removes Monte Carlo sampling error, and increases the speed of the simulation

compared to large firm panels. The overall numerical solution is outlined below.

1. Guess a set of γi for i ∈ {0, 1, 2, 3, 4, 5} in the aggregate law of motion.

2. Firms choose relative price to solve profit maximization given the conjectured forecast

for the aggregate state. They are maximizing equation (27).

3. Given the policy function from step 2, the model is simulated using non-stochastic

simulation. This implies that the aggregate variables P o
t , σt, and St are simulated

from their discretized transition matrices. A histogram of weights is tracked over the

idiosyncratic variables pt(z)
Pt

, At(z), and χt(z). The density of prices at each individual

state is updated each period using the transition matrix for each variable.

4. Using the simulated data, the aggregate law of motion is re-estimated using the data.

5. γiter+1
i are updated using the new values.

6. Check if the equilibrium has converged. The maximum Den Haan statistic is computed

over the full simulation of 2000 periods (166.66 years). The maximum Den Haan statis-

tic is the maximum difference between the simulated value of log(Pt
St

) from the model,

and a dynamic forecast of log(Pt
St

)DH . The dynamic forecast of log(Pt
St

) is constructed by

repeated application of the Krusell and Smith forecasting equation, using the resulting

predicted dependent variable in the construction of the following periods forecast. This

method allows for accumulation of prediction error within the forecasting system. The

specific equilibrium convergence criterion is | DHmax
iter+1 −DHmax

iter |< .0001. After this

criterion is met the aggregate law of motion has converged and model equilibrium is

reached.

B Data Appendix

B.1 Stochastic Volatility Model

The stochastic volatility model is given by

logP o
t = ρplogP

o
t−1 + eσtνt (44)
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σt = (1− ρσ)σ + ρσσt−1 + φνσ,t (45)

The process for σt is latent, and following Plante and Traum (2012), Fernandez-Villaverde

et al. (2011), and Born and Pfeifer (2014), a sequential importance resampling particle filter

is used to evaluate the likelihood function due to the nonlinearity in the SV model. Once the

likelihood function of the data is constructed, a random walk Metropolis-Hastings algorithm

is used to compute the posterior distribution of the four parameters. Uniform priors are

used for each parameter. The particle filter uses 40,000 particles to construct the likelihood,

while 150,000 draws are used in the RWMH algorithm with the first 50,000 discarded. The

final acceptance ratio of proposals is 0.32, within the recommended window of 15% to 40%

in Roberts, Gelman and Gilks (1996). In order to obtain the volatility series of the data, the

backwards-smoothing routine of Godsill et al. (2004) is used.

The mean estimates of the volatility process imply that a positive one standard deviation

increase in the oil volatility increases the standard deviation of the oil price level shock by

(eφ-1) × 100%= 15%. 30

The prior and posterior distributions are in table 2.

B.1.1 Particle Filter Algorithm

A Sequential Importance Resampling particle filter is used to obtain the filtering density

p(σt|P o
t ; Θ), the probability of σt given the oil price observations and process parameters.

The likelihood of observing a series of oil prices P o
T , given an initial value P o

0 , can be written

as:

p(P T
o ; Θ) =

T∏
t=1

p(P t
o |P t−1

o ; Θ)

=

∫
1

eσ0
√

2π
exp

[
− 1

2
(
P 1
o − ρpP 0

o

eσ0
)2

]
dσ0

×
T∏
t=2

1

eσt
√

2π
exp

[
− 1

2
(
P t
o − ρpP t−1

o

eσ0
)2

]
p(σt|P t−1

o ; Θ)dσt

(46)

The particle filter approximates the filtering density p(σt|P t−1
o ; Θ) with a simulated dis-

tribution. The distribution is formed with particles:

30A one standard deviation increase in the oil volatility shock increases the standard deviation of the oil
price shock from e−2.607 = 0.074 to e−2.607+0.14 = 0.085.
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p(σt|P t
o ; Θ) ∼=

N∑
i=0

ωitδσit(σt) (47)

where
∑N

i=0 ω
i
t = 1 and ωit ≥ 0. The SIR is a two step prediction and filtering procedure

that starts with an initial condition p(σ0|P t
o ; Θ) = p(σ0; Θ).

Using equation (45) I construct the conditional density p(σ1|P 0
o ; Θ) = p(νσ,1)p(σ0; Θ). To

do this given N draws
(
σit|t
)N
i

from p(σt|P t
o ; Θ) and a draw of exogenous shocks νiσ,t ∼ N(0, 1),

equation (45) is used to compute
(
σit+1|t

)N
i

.

The filtering step uses importance sampling to update the conditional probability from

p(σt|P t−1
o ; Θ) to p(σt|P t

o ; Θ). Assign to each draw a weight defined by ωit = p(σt|P t−1
o , σt−1; Θ) =

1
eσt
√

2π
exp

[
− 1

2
(P

1
o−ρpP 0

o

eσt
)2

]
. The weights are then normalized to

ω̃it =
ωit∑N
i=1 ω

i
t

(48)

The prediction step is then repeated for time period t+1 up to time period T. The

likelihood function is then approximated by

p(P T
o ; Θ) ∼=

1

N

N∑
i=1

1

eσ
i
0

√
2π
exp

[
− 1

2
(
P 1
o − ρpP 0

o

eσ
i
0

)2

]

×
T∏
t=2

1

N

N∑
i=1

1

eσ
i
t|t−1
√

2π
exp

[
− 1

2
(
P t
o − ρpP t−1

o

eσ
i
t|t−1

)2

] (49)

B.1.2 Particle Smoother

I use the backward-smoothing routine of Godsill et al. (2004) to extract the historical

distribution of the volatilities. The factorization of the joint likelihood is given by

p(σT |P t
o ; Θ) = p(σT |P t

o ; Θ)
T−1∏
t=1

p(σt|σt+1:T , P
T
o ; Θ) (50)

The second factor is then simplified to

p(σt|σt+1:T , P
T
o ; Θ) = p(σt|σt+1, P

t
o ; Θ)

=
p(σt|P t

o ; Θ)f(σt+1|σt)
p(σt+1|P t

o)

∝ p(σt|P t
o ; Θ)f(σt+1|σt)

(51)
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The first equality comes from the Markovian properties of the model, f is the state tran-

sition density from 45. Equation 47 allows us to construct p(σt|P t
o ; Θ) by forward filtering,

therefore I can approximate the above equation RHS by

p(σt|σt+1, P
t
o ; Θ) ∼=

N∑
i=0

ωit|t+1δσit(σt) (52)

The weights are given by

ωit|t+1 =
ωitf(σt+1|σit)∑N
i=1 ω

i
tf(σt+1|σit)

(53)

where the ωit are the weights from the filtering step. Denote σ̃it the ith draw from the

smoothing density at time t. At time T, draws σ̃iT are obtained from p(σT |P T
o ) with the

weights ωiT . Progressing backwards in time, the recursions iteratively obtain draws σ̃it by

resampling with the weights 53.

This process is repeated many times using different independent smoothing trajecto-

ries to construct the smoothing distribution. Given the sequence of smoothed states the

smoothed residuals for both the level and volatility equations can also be extracted. The

smoothed volatilities were constructed using the mean of the posterior distribution using

10,000 trajectories with 40,000 particles each.

B.1.3 RWMC Algorithm

The random walk Metropolis-Hastings algorithm estimates the oil process parameters ρo,

ρσ, σ, and φ. The algorithm works as follows:

1) Starting from an initial guess Θ*, the parameter vector, generate the random walk

proposal density

Θprop
j+1 = Θprop

j + cN(0, 1), j=1,...,150,000

where j is the number of draws and c is a scaling parameter set to induce an acceptance

ratio suggested in Roberts, Gelman, and Gilks (1997).

2) The Metropolis-Hasting step. Compute the acceptance ratio ψ = min
(p(Θpropj+1 |p

T

p(Θpropj |pT , 1
)
.

A random number m is drawn from a uniform distribution over the unit interval. Then

Θj+1 = Θprop
j+1 if m ¡ ψ and Θj+1 = Θj+1 otherwise. This procedure is repeated for all draws.

The first 50,000 draws are used as a burn-in period, and the remaining 100,000 draws

are used as the invariant distribution of the resulting Markov Chain.
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B.2 GARCH Model

The estimated GARCH Model is

logP o
t = ρplogP

o
t−1 + εt (54)

where εt = σtzt, and zt ∼ N(0,1)

σ2
t = ω + αε2t−1 + βσ2

t−1 (55)

The estimated GARCH parameters are ρp = 0.997 (0.003), ω = 0.001 (0.001), α = 0.199

(0.050), β= 0.615 (0.102).

B.3 Price Data

The BLS sampling process is now described in more detail. Prices are collected from a

survey that asks producers for the price as of Tuesday of the week containing the 13th of the

month. The BLS uses a a three stage procedure to select individual items to include in the

PPI. An industry is considered the starting point of sampling by the BLS. The first sampling

stage is selecting establishments within an industry. An industry’s frame of establishments

are drawn from all firms listed in Unemployment Insurance as well as supplementary public

lists used to refine the sampling population.

A price forming unit is created by clustering establishments within an industry in the

second step. Within a price forming unit, all members must belong to the same industry.

Within an industry, strata may then be established before sampling units due to differences

in price determining behavior due to firm characteristics such as production technology or

geographic location. In each strata a price forming unit is selected to be in the sample in

proportion to its shipment value or number of employees.

In the third step, after an establishment is selected and chooses to participate the BLS

uses disaggregation to select specific items to sample. This technique selects a category of

items to be included in the PPI by assigning a probability of selection proportional to the

value of the category within the reporting unit. The categories are broken into smaller units

until individual goods and services are identified. If an individual item selected is sold at

more than one price due to some characteristic such as customer, size of order, or color, then

the particular transaction is selected also by probabilistic sampling.

Resampling of an industry accounts for changing market conditions every five to seven

years. In practice, many reporters and items are included before and after the resampling.

Nakamura and Steinsson (2008) exploit a two month period in 2001 when the BLS collected
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all data via by phone survey, rather than in the paper survey, and show that the data

collection method does not change price behavior.

The BLS item level data is used to construct all dispersion and frequency variables.

The monthly industry level data is trimmed in the panel regressions if there are less than

50 items within the industry in month t, and less than 15 observed price changes during

month t. Having a reasonable number of price changes for industry j during month t is

important to create an accurate measure of price change dispersion. Increasing the number

of observed price changes does not change the results. Industry level inflation used as an

independent variable comes from the official published Bureau of Labor Statistics numbers.

Constructing average item level inflation within a month does not affect the coefficient on

oil price volatility, but does remove significance for the lagged inflation coefficient.

B.4 Industrial Production

Industrial production is taken from the Federal Reserve Board website. It covers man-

ufacturing, mining, and electric and gas utilities and is intended to measure variation in

national output over the course of the business cycle.

B.5 Oil Prices

Daily oil prices are taken from the Department of Energy website. It is measured as

the spot price of West Texas Intermediate (WTI) crude oil in Cushing, OK. This data

is available daily from 1986-2015 to construct realized volatility. Monthly measures are

the average monthly spot price. All nominal amounts are transformed into real prices by

deflating with the PPI Finished goods index. During the stochastic volatility model and

GARCH model estimation, data from 1986 to 2014 is used.

Composite Refiners Acquisition Cost and Brent Crude oil prices are used for robustness.

RAC is a weighted average of domestic and imported oil. Brent Crude is extracted from

the North Sea and is a leading price benchmark for Atlantic basin crude oils. This data is

available monthly.

All three data series are available from the U.S. Energy Information Administration.

A large literature attempts to explain movements in the price of oil. This section will

summarize some of the main findings, which show that most movements in the price of oil

that have been identified come from outside of the United States.

US oil prices were regulated by government agencies prior to 1973, leading to long periods

of constant price followed by infrequent adjustments. Due to the oil price increase in 1973

and 1974, it became too difficult to provide a ceiling on the price of oil and prices have
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since been allowed to fluctuate in response to supply and demand. In the early 1980’s there

was an increase in oil production in non-OPEC countries, which decreased the market share

of OPEC from 43 percent in 1980 to 28 percent in 1985 as documented by Baumeister and

Kilian (2016). During this time, OPEC’s efforts to influence the price of oil were unsuccessful.

There was a drop in the price of oil in the late 1990’s due to a decrease in the demand

for the price of oil that was partially caused by the Asian financial crisis of 1997. Kilian and

Murphy (2014) argue the increase in the price of oil following in 1999 reflected a combination

of factors including higher demand for oil from a global demand recovery, and increased

inventory demand due to coordinated supply cuts. A brief increase in the price of oil in late

2002 and early 2003 were related to two global oil supply disruptions. The first disruption

was the Venezuelan oil strike from December 2002 to February 2003. The second oil supply

disruption was due to the Iraq War in 2003

The large, long price increase in the nominal price of oil from $28 in 2003 to $134 in mid

2008, an increase of over 350 percent, or 250 percent in real terms is generally considered

to be due to increases in demand. Hamilton (2009), Kilian (2008b), and Kilian and Hicks

(2013) argue that the demand shifts are associated to the expansion of the global economy

and in particular additional demand from Asia. Oil producers were unable to supply the

increase in demand during this time, leading to the increase in price.

Oil prices plummeted from $134 in June 2008 to $34 in February 2009 due to anticipation

of a global recession. Baumeister and Kilian (2015) argue that when it became clear the

financial system would not collapse in 2009, oil prices stabilized at $100 per barrel. Kilian

and Lee (2014) argue that a brief spike in prices in 2011 is related to the Libyan uprising.

Between June 2014 and January 2015 the price of oil fell nearly fifty percent. This decline

is attributed by Baumeister and Kilian (2015) to a decline in global activity, as well as an

increase in the supply of oil likely due to US shale production.

B.6 Industry Specific Oil Pass Through

I run an industry specific oil pass with industry and time fixed effects to control for the

macroeconomic cycle. Specifically I run a pass through regression of the form:

πj,t = αj + αt +
12∑
i=0

bi
(
so,j ∗∆logP o

t−i
)

+ εj,t (56)

If there is greater oil price pass through for industries with more oil usage then b0 and∑12
i=0 bi should be positive. The results are in table 14.

These results show that after conditioning on common aggregate shocks, that industries
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Short Run Pass Through Long Run Pass Through
0.135∗∗∗ 1.649∗∗∗

(0.003) (0.017)

Table 14: Pass Through Regression

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. Number of observation=7,984.
Number of industries=51. R2 = 0.15. Robust asymptotic standard errors reported in parentheses are
clustered at the industry level: * p < .10; ** p < .05; and *** p < .01.

Table 15: NAICS 4 Industry Oil Share

Rank Industry Name θ
1 3251 Basic Chemical Manufacturing 0.243
2 3252 Resin, Synthetic Rubber, and Artificial Synthetic Fibers and Filaments Manufacturing 0.143
3 3253 Pesticide, Fertilizer, and Other Agricultural Chemical Manufacturing 0.124
4 3259 Other Chemical Product and Preparation Manufacturing 0.108
5 3255 Paint, Coating, and Adhesive Manufacturing 0.093
6 3333 Commercial and Service Industry Machinery Manufacturing 0.043
7 3274 Lime and Gypsum Product Manufacturing 0.041
8 3221 Pulp, Paper, and Paperboard Mills 0.035
9 3212 Veneer, Plywood, and Engineered Wood Product Manufacturing 0.034
10 3256 Soap, Cleaning Compound, and Toilet Preparation Manufacturing 0.033

Average 0.016

with greater oil usage have greater pass through of oil prices.

B.7 Input Output Tables

Detailed Input Output “Use” tables from the Bureau of Economic are constructed every

5 years. I use them to construct value added weights to aggregate industries for price

statistics. The oil share of value added is also constructed using the Input Output tables.

The oil producing sector is defined as NAICS 324110, Petroleum Refineries. The NAICS

definition of this category is:

This industry comprises establishments primarily engaged in refining crude petroleum

into refined petroleum. Petroleum refining involves one or more of the following

activities: (1) fractionation; (2) straight distillation of crude oil; and (3) cracking.

The overall average dollar share of oil to value added is listed in table 15 along with the

four digit industries with the largest oil share.

B.8 Regression Robustness Checks

As an additional robustness check I use the interquartile range of price changes rather

than the standard deviation. The results for the industry invariant regression are shown in
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Dependent Variable: IQR of Price Change

Stochastic Vol Realized Vol GARCH Vol
∆log(P o

t−1) 0.012 0.010 0.000
(0.007) (0.007) (0.007)

σt−1 0.397∗∗∗ 0.092∗∗∗ 0.239∗∗∗

(0.054) (0.023) (0.037)
πj,t−1 -0.099 0.038 0.053

(0.083) (0.111) (0.112)
∆IPj,t -0.007 -0.010 -0.010

(0.012) (0.011) (0.010)
EBPt -0.001 0.003∗∗ 0.002

(0.002) (0.002) (0.001)
VIXt−1 0.000 0.000 0.0002∗

(0.000) (0.000) (0.0001)
Industry FE Yes Yes Yes
Number of Industries 63 63 63
N 10,946 10,946 10,946

Table 16: Producer Price Change Dispersion and Macroeconomic Shocks

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. Robust asymptotic standard errors
reported in parentheses are double clustered at the industry-month level: * p < .10; ** p < .05; and
*** p < .01.

table 16. The regressions for the three different measures of oil price volatility show that oil

price volatility is positive and statistically significantly related to price change dispersion.

Panel A of Table 17 shows the main industry specific oil price volatility results using the

interquartile range of non-zero price changes as the dependent variable. Panel B of Table

17 shows the results using the standard deviation of price changes, including non-zero price

changes. The table shows that oil price volatility still has a positive correspondence with

robust measures of price change dispersion.

The main industry results with GARCH oil price volatility is listed in Panel A of 18.

Realized oil price volatility results are listed in Panel B of 18.

Robustness results with 2008 dummy and additional covariates in Table 19. These results

use the stochastic volatility measure of oil prices, and show that adding additional covari-

ates to the regression do not affect the impact that oil price volatility has on price change

dispersion inside or outside of the 2008 crisis period.

Table 20 includes controls for lags of all variables and reports the sum. The reported

total effect is similar to the regression with one lagged observation for oil price volatility.

I estimate the same regression for price change frequency as I have for price change

dispersion at the industry level. That is,
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Yj,t = η ∗ (so, j ∗∆log(P o
t−1)) + λ ∗ (so, j ∗ σt−1) + γ′Xj,t + αj + αt + εjt (57)

where Yj,t is industry level price change frequency. The results are in table 21. I find no

evidence that oil price volatility affects price change frequency.

Using a higher level of aggregation does not impact the baseline results. Table 22 shows

the baseline results for a NAICS 3 level of industry aggregation for different volatility mea-

sures. They show that all three measures of oil price volatility increase industry price change

dispersion even when there is greater heterogeneity within an industry due to aggregation.

B.9 Price Data Comparison

Figure 9: Monthly PPI Inflation and CPI Inflation
Note: Consumer Price index for all Urban Consumers and Producer Price Index by

Commodity for Finished Goods. Both indices are seasonally adjusted.

Figure 9 shows producer price inflation plotted against consumer price inflation for the

sample period. The month over month producer inflation rate is more volatile than the

consumer inflation rate. The correlation between the two series is 0.82. The price setting

statistics are broadly similar except for a lower fraction of small price changes in the PPI.
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The low fraction of small price changes removes mass from the middle of the price change

distribution, which increases the kurtosis of the distribution.

B.10 Central Bank Quote

The full text of Janet Yellen’s quote from the “Current Conditions and the Outlook for

the Economy” on June 6, 2016 are below.

In particular, an important theme of my remarks today will be the inevitable un-

certainty surrounding the outlook for the economy. Unfortunately, all economic

projections are certain to turn out to be inaccurate in some respects, and possibly

significantly so. Will the economic situation in Europe or China take a turn for

the worse or exceed expectations? Will U.S. productivity growth pick up and

allow stronger growth of gross domestic product (GDP) and incomes or instead

continue to stagnate? What will happen with the price of oil? The uncertainties

are sizable, and progress toward our goals and, by implication, the appropriate

stance of monetary policy will depend on how these uncertainties evolve. In-

deed, the policy path that my colleagues and I judge most likely to achieve and

maintain maximum employment and price stability has evolved and will continue

to evolve in response to developments that alter our economic outlook and the

associated risks to that outlook.
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Panel A
Dependent Variable: IQR of Price Change

(1) (2) (3) (4)
so,j ∗∆log(P o

t−1) -0.268∗∗ -0.271∗∗ -0.267∗∗ -0.228∗

(0.118) (0.119) (0.131) (0.119)
so,j ∗ σt−1 2.168∗∗ 2.177∗∗ 2.184∗ 1.945∗∗

(1.007) (1.009) (1.112) (0.967)
πj,t 0.029 0.018 0.018

(0.106) (0.085) (0.082)
∆IPj,t 0.003 0.002

(0.008) (0.008)
PriceDispj,t−1 0.133∗∗∗

(0.042)
Time & Industry FE Yes Yes Yes Yes
Number of Industries 81 81 63 63
N 13,606 13,606 10,946 10,939

Panel B
Dependent Variable: Standard Dev of Price Change with Zeros

(1) (2) (3) (4)
so,j ∗∆log(P o

t−1) 0.002 -0.018 -0.043 -0.025
(0.036) (0.043) (0.044) (0.040)

so,j ∗ σt−1 2.114∗∗∗ 2.175∗∗∗ 2.254∗∗∗ 2.031∗∗∗

(0.693) (0.731) (0.815) (0.731)
πj,t 0.196∗∗∗ 0.195∗∗∗ 0.194

(0.071) (0.070) (0.068)
∆IPj,t 0.004 0.002

(0.007) (0.007)
PriceDispj,t−1 0.112∗∗∗

(0.018)
Time & Industry FE Yes Yes Yes Yes
Number of Industries 81 81 63 63
N 13,606 13,606 10,946 10,939

Table 17: Industry Specific Coefficient: Robust Price Change Dispersion Measures

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. Panel A shows main regression
specifications with the interquartile range of price changes as the dependent variable. Panel B shows the
main regression specifications with the standard deviation of price changes including zeros as the dependent
variable. Robust asymptotic standard errors reported in parentheses are double clustered at the industry-
month level: * p < .10; ** p < .05; and *** p < .01.
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Panel A
Dependent Variable: Standard Deviation of Price Change

(1) (2) (3) (4)
so,j ∗∆log(P o

t−1) -0.043 -0.052 -0.127 -0.097
(0.113) (0.115) (0.114) (0.109)

so,j ∗ σt−1 2.624∗∗∗ 2.676∗∗∗ 2.894∗∗ 2.693∗∗

(0.956) (0.980) (1.083) (1.014)
πj,t 0.085 0.091 0.091

(0.116) (0.111) (0.109)
∆IPj,t 0.000 -0.003

(0.014) (0.015)
PriceDispj,t−1 0.067∗∗∗

(0.016)
Time & Industry FE Yes Yes Yes Yes
Number of Industries 81 81 63 63
N 13,606 13,606 10,946 10,939

Panel B
Dependent Variable: Standard Deviation of Price Change

(1) (2) (3) (4)
so,j ∗∆log(P o

t−1) 0.134 0.127 0.014 0.039
(0.127) (0.127) (0.092) (0.088)

so,j ∗ σt−1 1.747∗∗∗ 1.766∗∗∗ 1.502∗∗∗ 1.428∗∗∗

(0.578) (0.586) (0.518) (0.493)
πj,t 0.080 0.081 0.082

(0.117) (0.114) (0.111)
∆IPj,t 0.002 -0.002

(0.015) (0.015)
PriceDispj,t−1 0.067∗∗∗

(0.016)
Time & Industry FE Yes Yes Yes Yes
Number of Industries 81 81 63 63
N 13,606 13,606 10,946 10,939

Table 18: Industry Specific Coefficient: Alternative Oil Volatility Measures

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. Panel A shows main regression
specifications with GARCH oil price volatility and the standard deviation of non-zero price changes as the
dependent variable. Panel B shows main regression specifications with realized oil price volatility and the
standard deviation of non-zero price changes as the dependent variable. Robust asymptotic standard errors
reported in parentheses are double clustered at the industry-month level: * p < .10; ** p < .05; and
*** p < .01.
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Dependent Variable: Standard Deviation of Price Change

(1) (2) (3) (4)
so,j ∗∆log(P o

t−1) ∗ [Crisis = 0] 0.138 0.131 0.088 0.112
(0.084) (0.085) (0.087) (0.083)

so,j ∗∆log(P o
t−1) ∗ [Crisis = 1] -0.130 -0.171 -0.591∗ -0.553

(0.352) (0.360) (0.311) (0.298)
so,j ∗ σt−1 ∗ [Crisis = 0] 2.727∗∗∗ 2.763∗∗∗ 2.727∗∗∗ 2.561∗∗∗

(0.852) (0.866) (0.948) (0.888)
so,j ∗ σt−1 ∗ [Crisis = 1] 3.018∗∗∗ 3.000∗∗∗ 2.704∗∗ 2.563∗∗

(0.966) (0.963) (1.035) (0.972)
πj,t 0.081 0.088 0.089

(0.117) (0.113) (0.111)
∆IPj,t 0.003 -0.001

(0.014) (0.015)
PriceDispj,t−1 0.066∗∗∗

(0.015)
Time & Industry FE Yes Yes Yes Yes
Number of Industries 81 81 63 63
N 13,606 13,606 10,946 10,939

Table 19: 2008 Crisis Year Regression

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. σt is the stochastic volatility measure
of oil price volatility. Crisis year indicator is defined as 1 during 2008 and 0 otherwise. This is the same
crisis definition timing as Gilchrist et al. (2015). Robust asymptotic standard errors reported in parentheses
are clustered at the industry level: * p < .10; ** p < .05; and *** p < .01.
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Dependent Variable: Standard Deviation of Price Change
SV RV GARCH

(1) (2) (3) (4) (5) (6)∑3
i=0 θj∆log(P o

t−i) -0.561 -0.416 -0.548
(0.360) (0.305) (0.328)∑3

i=0 θjσt−i 2.658∗∗ 2.155∗∗ 3.370∗∗∗

(1.002) (1.028) (1.255)∑3
i=0 πj,t−i 0.039 0.026 0.054

(0.127) (0.131) (0.123)∑3
i=0 ∆IPj,t−i -0.010 -0.008 -0.014

(0.054) (0.054) (0.055)∑3
i=1 θj∆log(P o

t−i) -0.227 -0.265 -0.397
(0.249) (0.196) (0.260)∑3

i=1 θjσt−i 2.771∗∗∗ 1.771∗ 2.601∗∗

(0.980) (0.097) (1.180)∑3
i=1 πj,t−i 0.041 0.036 0.059

(0.127) (0.128) (0.121)∑3
i=1 ∆IPj,t−i -0.012 -0.013 -0.016

(0.054) (0.055) (0.055)
Time FE Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Number of Industries 48 48 48 48 48 48
N 10,835 10,835 10,835 10,835 10,835 10,835

Table 20: Industry Specific Coefficient: Lagged Volatility Structure

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. The dependent variable is non-zero
price change dispersion. All specifications use the stochastic volatility of oil prices. The reported coefficients
are the sum of the listed lagged variables. Robust asymptotic standard errors reported in parentheses are
clustered at the industry level: * p < .10; ** p < .05; and *** p < .01.
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Dependent Variable: Frequency of Price Change

(1) (2) (3) (4)
so,j ∗∆log(P o

t−1) -0.183∗∗ -0.271∗∗∗ -0.262∗∗∗ -0.181∗∗

(0.087) (0.085) (0.093) (0.076)
so,j ∗ σt−1 0.470 0.739 0.897 0.537

(1.451) (1.610) (1.845) (0.906)
πj,t 0.859∗∗∗ 0.913∗∗∗ 0.839∗∗∗

(0.203) (0.227) (0.190)
∆IPj,t -0.046 -0.052

(0.029) (0.035)
Freqj,t−1 0.547∗∗∗

(0.040)
Time FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Number of Industries 81 81 63 63
N 13,606 13,606 10,946 10,941

Table 21: Industry Specific Coefficient: Frequency of Price Change

Note: Sample period: 1998:M1 to 2014:M12 at a monthly frequency. This table shows the main specification
with frequency of price change as the dependent variable and stochastic volatility of oil prices. Robust
asymptotic standard errors reported in parentheses are double clustered at the industry-month level: * p <
.10; ** p < .05; and *** p < .01.
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