
1/37

Behavioral Sticky Prices

Sergio Rebelo, Miguel Santana, and Pedro Teles

September 2024

Behavioral Sticky Prices Sergio Rebelo, Miguel Santana, and Pedro Teles 1 / 37



Introduction

Consider framework widely used in cognitive psychology literature to describe decision making.

According to this framework, people use two systems to make decisions:

I Familiar situations - System 1: effortless decisions, but prone to systematic errors.

I Unfamiliar situations - System 2: cognitively costly decisions but more accurate.

In our model:

I Households use this framework in purchasing consumption goods.

I System 2 is triggered by changes in nominal prices of these goods.
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Introduction

Firms exploit this behavior to their advantage.

Producers of goods with high demand relative to rational optimum want to keep their prices.

This strategic behavior generates a new form of nominal price rigidity.
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Introduction

Phenomena that are consistent with our framework:

“Shrinkflation”: Changing product size instead of prices.

Biden discussed shrinkflation in a February 2024 Super Bowl video broadcast: ‘[...] Some companies
are trying to pull a fast one by shrinking the products little by little and hoping you won’t notice.”

Subscription services: Put consumer purchases on auto-pilot to avoid triggering System 2.

“Convenient” prices: $9.99 creates perception that price is lower that what it is.
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Model properties

1 Model is consistent with puzzling “rockets and feathers” phenomenon:

I Prices increase rapidly when costs rise but decrease slowly when costs fall.

2 Model also consistent with “sticky winners” phenomenon documented by Ilut, Valchev, Vincent
(2020):

I Firms that receive a high demand realization are less likely to change their prices.

3 Unlike in other cashless sticky price models, price stability is not optimal.
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Preferences and Technology

Household Preferences:

U =
C1−σ − 1

1− σ
− N1+η

1 + η
−
∫ 1

0
Iidi , σ, η > 0,

C = composite of differentiated goods,

C =

(∫ 1

0
c

θ−1
θ

i di

) θ
θ−1

, θ > 1.

N = labor supply.
Ii = cognitive cost of using System 2 to choose how much of good i to buy.

Production: yi = Ani .

Market structure: monopolistic competition.
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Household’s Problem Under Full Rationality

max
ci ,N

C1−σ − 1

1− σ
− N1+η

1 + η

subject to

C =

(∫ 1

0
c

θ−1
θ

i di

) θ
θ−1

,

and ∫ 1

0
Picidi ≤ WN +

∫ 1

0
Πidi − T .

Pi = Nominal price of good i .

W = Nominal wage.

Πi = Nominal profits of firm i .

T = Nominal lump-sum taxes.
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Solution to Utility Maximization Problem

The state variables of the household’s problem are ω ≡
[
W , {Pi} ,

∫ 1
0 Πidi − T

]
.

The solution to the utility maximization problem is fully characterized by

c∗i (ω) =

(
Pi

P

)−θ

C ∗ (ω) ,

[C ∗ (ω)]σ [N∗ (ω)]η =
W

P
≡ w ,

PC ∗ (ω) = wN∗ (ω) +

(∫ 1
0 Πidi − T

P

)
,

P ≡
(∫ 1

0
P1−θ
i di

) 1
1−θ

.
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Household’s Problem Under Bounded Rationality

Bounded rationality as in Ilut and Valchev (2023).
I Household knows ω.

I Cannot solve for c∗i (ω), N∗ (ω) due to cognitive costs of solving optimization problems.

Household forms beliefs about rational demand x∗i (ω) ≡ ln c∗i (ω).

Household is only uncertain about optimal relation between ci and Pi .

Solution to bounded rationality problem:
I Household choose ci ’s based on costly signals about optimal demand.

I Given ci ’s, N satisfies budget constraint.

10/37



Bounded Rationality: Timing

Two periods, t = 0 (pre-period), and t = 1. Pre-period so System 1 is well-defined at t = 1.

At t = 0, 1:
I Household starts with normal prior for log demand N

(
xi ,t−1 (Pi ) , σi ,t−1

(
Pi ,P

′
i

))
.

I Observes Pi ,t and chooses variance σ2
ε,i ,t of conditionally normal signal si ,t = x∗ (Pi ,t ) + σε,i ,tεi ,t .

I Observes si ,t and sets log-demand to posterior mean xi ,t (Pi ,t ).

Choice of σ2
ε,i ,t entails cognitive cost Ii ,t , of the standard form

Ii ,t = κ ln

[
σ2
i ,t−1 (Pi ,t)

σ2
i ,t (Pi ,t)

]
, κ > 0,

Ii ,t is proportional to average reduction in entropy due to signal.

Optimal solution: if σ2
i ,t−1 (Pi ,t) > κ, then σ2

i ,t (Pi ,t) = κ. Otherwise, σ2
i ,t (Pi ,t) = σ2

i ,t−1 (Pi ,t).
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Pre-period: Prior Variance

Assume

σ2
i ,−1 (Pi ) = σ2

c , σ2
c > κ,

and

σi ,−1
(
Pi ,P

′
i

)
= 0 for all Pi 6= P ′i .

Initial covariance function is such that:

1 Updating in pre-period occurs for any observed initial Pi ,0, since σ2
c > κ.

2 Household believes x∗i (Pi ) is uninformative about x∗i
(
P ′i
)
.

We make the independence assumption to keep System 1 simple.
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Pre-period: Posterior

In pre-period, household learns about optimal demand at observed price Pi ,0.

Posterior mean at Pi ,0 is

xi ,0 (Pi ,0) = xi ,−1 (Pi ,0) + α [x∗ (Pi ,0) + σεεi ,0 − xi ,−1 (Pi ,0)] ,

where

α ≡ 1− κ

σ2
c

; σε ≡
√

κ

α
.

For other unobserved prices, Pi 6= Pi ,0, the household does not learn:

xi ,0 (Pi ) = xi ,−1 (Pi ) , Pi 6= Pi ,0.
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t = 1

Given learning occurred in pre-period for Pi = Pi ,0, prior variance function at t = 1 is

σ2
i ,0 (Pi ) =

{
σ2
c , if Pi 6= Pi ,0

κ, if Pi = Pi ,0
.

Implies that

xi ,1 (Pi ,1) =

{
xi ,0 (Pi ,0) , if Pi ,1 = Pi ,0

xi ,0 (Pi ,1) + α [x∗ (Pi ,1) + σεεi ,1 − xi ,0 (Pi ,1)] , if Pi ,1 6= Pi ,0
.

If Pi ,1 = Pi ,0, familiar situation. Household relies on System 1.

If Pi ,1 6= Pi ,0, unfamiliar situation. Household activates System 2.
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Demands
As in Ilut and Valchev (2023), assume xi ,−1 (Pi ) = x∗ (Pi ).

This assumption ensures results are not driven by ex-ante biases.

Substituting period 1’s prior mean, xi ,0, in period 1’s posterior mean, xi ,1, we get

xi ,1 (Pi ,1) =

{
x∗ (Pi ,0) + ασεεi ,0, if Pi ,1 = Pi ,0

x∗ (Pi ,1) + ασεεi ,1, if Pi ,1 6= Pi ,0
.

Letting γ ≡ ασε and pi ≡ Pi
P , demand for good i is

ci = eγεi c∗i (ω) = eγεi p−θ
i C ∗ (ω) ,

so

ci ≡
{
eγεi ,0p−θ

i ,0C
∗ (ω) , if Pi ,1 = Pi ,0

eγεi ,1p−θ
i ,1C

∗ (ω) , if Pi ,1 6= Pi ,0
.
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Firms’ Problem

Firms are fully rational and observe past demand shock εi ,0.

A new demand shock εi ,1 is only generated if the firm changes its price.

If a firm changes its price, expected profit is

E [eγεi ,1 ]
[
pi ,1 − (1− τn)

w

A

]
p−θ
i ,1C

∗ (ω) ,

where τn is labor subsidy.

Assume Pi ,0 = P0 for all i . If a firm does not change its price, profit is

eγεi ,0

[(
P0

P

)
− (1− τn)

w

A

] (
P0

P

)−θ

C ∗ (ω) .
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Firms’ Pricing Policy

Optimal relative reset price is

p∗ =

(
θ

θ − 1

)
(1− τn)

w

A

There is a demand shock, `, such that whenever εi ,0 ≥ ` the firm chooses to keep its price constant.

Pricing policy is

pi ,1 =

{
p∗, if εi ,0 < `
P0
P ≡

1
π , if εi ,0 ≥ `

.

If System 1 demand is high, firm prefers relative price 1
π to p∗ to avoid triggering System 2.
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Equilibrium Reset Price

Fraction χ sets real price 1
π , fraction 1− χ sets real price p∗. Can define p∗ (π) from

1 = χ (π)

(
1

π

)1−θ

+ [1− χ (π)] [p∗ (π)]1−θ .

Different from Calvo pricing because probability of price change χ (π) is endogenous.

Key asymmetry:

For high inflation levels, all firms reset their price.

I If π is high, nominal marginal costs are high.

I By keeping old price, firms get negative profit margin.

I No εi ,0 makes them want to keep price.

For deflation, a share of firms with high demands want to keep their prices.
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Labor Market Clearing, Government

Market clearing conditions for labor and for good i imply

∆n (π)C ∗ (ω) = AN.

∆n (π) =
∫ 1
0 eγε̃i p−θ

i di is a production distortion caused by deviations from rationality.

Government:

Finances τn with lump-sum taxes.

Controls growth of P × C ∗ (ω):

µ = π
C ∗ (ω)

C0
,

where C0 is normalized to 1. Target is not
∫ 1
0 Picidi for technical reasons. Details
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Equilibrium Conditions

Demands can be written as ci = eγε̃i p−θ
i C ∗ (ω).

C ∗ (ω) is aggregate consumption that a rational household would choose in this economy.

Using

conditions of utility-maximization problem,

equilibrium value of profits and taxes,

we obtain

C ∗ (ω) = C ∗ (π) =


[(

θ−1
θ

)
1

1−τn
p∗ (π)A

]1+η

[ϑ (π)]η


1

σ+η

,

where ϑ (π) is a function that summarizes the effect of profits and taxes.
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Equilibrium Conditions

C determined by aggregator

C =

(∫ 1

0
c

θ−1
θ

i di

) θ
θ−1

= ∆u (π)C ∗ (ω) ,

where

∆u (π) ≡
(∫ 1

0
e(

θ−1
θ )γε̃i p1−θ

i di

) θ
θ−1

is a utility distortion due to deviations from rationality.

N determined by labor market clearing,

∆n (π)

∆u (π)
C = AN,
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Equilibrium Conditions Summarized

Can combine above equations and policy rule, πC ∗ (ω) = µ, to obtain two equations in C and π:

C (π) = ∆u (π)


[(

θ−1
θ

)
1

1−τn
p∗ (π)A

]1+η

[ϑ (π)]η


1

σ+η

πC (π) = ∆u (π) µ

For now, set 1− τn = θ−1
θ and µ = 1.
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Rockets and Feathers

We study the equilibria associated with productivity levels AL = 1
1+υ and AH = (1 + υ), υ > 0.

In the frictionless version of our model, inflation πf satisfies
∣∣ln πf

H

∣∣ = ∣∣ln πf
L

∣∣.
In our model, we have |ln πL| > |ln πH | for large shocks.

Prices rise more than they decline in response to a shock of the same amount.

For now, able to show for particular parameters. But numerically seems always true.

Proposition (Rockets and Feathers)

Suppose σ = 1 and η = 0. There is υ such that if υ > υ,

|ln πL| > |ln πH | .
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Rockets and Feathers
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Rockets and Feathers

For infinitesimal shocks, response of inflation is symmetric.

For large shocks, inflation responds more to cost increases than declines.

If costs rise significantly, all firms increase prices to avoid losses.

I Prices and costs eventually rise one-to-one.

If costs decline, there are always firms willing to keep their price to benefit from favorable demand.

I Prices decline by less than costs.

Proposition holds for Taylor rule in dynamic version of the model. Details
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Optimal Policy

Planner has two instruments: τn and π. Welfare function is

W (τn, π) =
[C (τn, π)]1−σ − 1

1− σ
− [N (τn, π)]1+η

1 + η
− κ [1− χ (π)] ln

(
σ2
c

κ

)
.

Welfare depends negatively on fraction of flexible firms 1− χ (π).

The higher σ2
c , the more effort the household needs to put into thinking about good i .
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Optimal Policy

Solve problem in two steps:

1 Choose τn optimally given π.

2 Choose π.

Moreover, recast choice of τn as choice of C and N subject to equilibrium conditions.

The condition

C (τn, π) = ∆u (π)


[(

θ−1
θ

)
1

1−τn
p∗ (π)A

]1+η

[ϑ (π)]η


1

σ+η

does not constrain the problem because τn can be chosen to set any C .
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Optimal Policy

The condition

C =
∆u (π)

∆n (π)
AN

is needed because τn cannot affect ∆u (π) or ∆n (π).

Lemma: ∆u (π) < ∆n (π) by concavity.

Due to distortions in ci ’s, can never implement first-best, since it involves C = AN.

Given π, problem of choosing C and N is

max
C1−σ − 1

1− σ
− N1+η

1 + η
s.t. C =

∆u (π)

∆n (π)
AN.
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Optimal Fiscal Policy

Solution is similar to first-best, but with modified productivity:

Copt (π) =

[
∆u (π)

∆n (π)
A

] 1+η
σ+η

; Nopt (π) =

[
∆u (π)

∆n (π)
A

] 1−σ
σ+η

τn is then set to satisfy

∆u (π)


[(

θ−1
θ

)
1

1−τn
p∗ (π)A

]1+η

[ϑ (π)]η


1

σ+η

︸ ︷︷ ︸
C (π)

=

[
∆u (π)

∆n (π)
A

] 1+η
σ+η

︸ ︷︷ ︸
Copt(π)

.

Fiscal policy cannot undo distortions in aggregate production, but can set MRSC ,N = MRTC ,N .
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Optimal Monetary Policy

There is threshold π such that if π ≥ π, all firms change price.

Prices are flexible in equilibrium, so allocations do not depend on inflation.

So W (π) =Ws for all π ≥ π.

Proposition (If cognitive costs are high, price stability is better than inflation)

There is σ2
c such that σ2

c ≥ σ2
c implies W (1) ≥ Ws .

When π = 1, the pre-period’s price is already at optimal reset price.

The fraction of firms with sticky prices is maximized. Cognitive costs are minimized.

Price stability is better than high inflation if cognitive costs are high enough.
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Optimal Monetary Policy

Proposition (Some deflation is always better than price stability)

There is π < 1 such that W (π) >W (1).

If the probability of keeping the price were the same for all firms, price stability would be optimal.

That is the case with Calvo pricing.

Here there is selection: firms with sticky prices are the ones with relatively high demands.

Present even at π = 1, since at π = 1 firms with low εi ,0 still change price infinitesimally.
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Mitigating Selection Distortion

At π, average demand for firms that do not change their price is

EI [e
γεi ,0 | εi ,0 ≥ ` (π)] c∗

(
1

π

)
and average demand for firms that change their price is

EI [e
γεi ,1 ] c∗ [p∗ (π)] .

At π = 1:

1 p∗ (1) = 1, so no price dispersion.

2 But EI [e
γεi ,0 | εi ,0 ≥ ` (π)] > EI [e

γεi ,1 ], so there is selection.

By deflating, planner reduces consumption of sticky firms goods through c∗
(
1
π

)
.
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Conclusion

We explore a framework where a dual process mechanism drives household choices.

Framework gives rise to new kind of price rigidity due to strategic behavior by firms.

There is range of cost shocks for which some producers do not change prices.

Model is consistent with “rockets and feathers” phenomenon.

Unlike in other cashless economies with sticky prices, price stability is not optimal.
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Policy Rule

In principle, could set

µ =
∫ 1

0
Picidi .

But ∫ 1

0
Picidi = ∆p (π)PC ∗ (π) ,

where ∆p (π) ≡
∫ 1
0 eγε̃i p1−θ

i di is an expenditure distortion arising from bounded rationality.

∆p (π) is non-monotonic, so economy becomes vulnerable to multiplicity of equilibria. Back
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Taylor Rule

Suppose the household is infinitely-lived, and time is indexed by t = 1, 2, . . . .

Production structure is the same in each period.

Aggregate productivity is At = 1, for t ≥ 2.

The household is fully rational from t ≥ 2 onwards.

The central bank sets the gross nominal interest rate, Rt , to

Rt =
1

β
π

φ
t , φ > 1.

From period 2 onwards, Ct = πt = 1 is the (locally) unique equilibrium.
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Taylor Rule

In period 1, solution to utility maximization problem implies

1

β

[
1

C ∗ (ω)

]σ

= R1.

Combining with the Taylor rule,

C ∗ (ω) = π
− φ

σ
1 .

Negative relation between output and inflation like with µ = πC ∗ (ω).

When σ = 1, η = 0, our main proposition holds as long as φ > 1.
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Rockets and Feathers With a Taylor Rule
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