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Abstract

This paper provides novel empirical evidence on portfolio rebalancing in inter-
national bond markets through the prism of investors’ demand for bonds. Using
a granular dataset of global government and corporate bond holdings by mutual
funds domiciled in the world’s two largest currency areas, I estimate heterogeneous
and time varying demand elasticities for bonds. Safe assets such as US Treasuries
or German Bunds face especially inelastic demand from investment funds compared
to riskier bonds. But spillovers from these safe assets to global bond markets are
strikingly different. Funds substitute US Treasuries with global bonds, including
risky corporate and emerging market bonds, whereas German Bunds are primarily
substitutable within a narrow set of euro area safe government bonds. Substitutabil-
ity deteriorates in times of stress, impairing the transmission of monetary policy.
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1 Introduction

International bond markets play a key role in the transmission of monetary policy, finan-
cial intermediation and the unfolding of financial crises. In all these roles, knowledge of
the demand elasticities and substitutability of fixed income assets is key for policy mak-
ers. And the demand elasticities with respect to safe assets, in particular, are crucial.
For example, central banks need such information to judge how monetary policies that
directly target the return on safe assets would translate into the broader costs of firm and
household borrowing or which fixed income assets might benefit from ”flight to safety”
demand during global distress. Safe assets are naturally more attractive for risk averse
investors but their appeal may also emanate from non-pecuniary benefits related to their
liquidity, collateral pledgeability, simplicity or regulatory requirements (often summarized
as an asset’s ”convenience yield”1) or from assets’ hedging properties2. For all these rea-
sons, investors may choose to hold safe assets in spite of a lower return, implying that
demand for safe assets may be less elastic. However, the literatures on safe assets and on
monetary policy transmission, more broadly, have an important gap as they lack carefully
estimated rich own and cross demand elasticities for the world’s safe assets.

This paper fills the gap in our understanding of safe asset demand by directly estimating
elasticities for global government and corporate bonds held by mutual funds that are
domiciled in the world’s two largest currency areas – US and the euro area. I recover
the funds’ own and substitution elasticities that vary in the cross-section of international
bonds as well as over time for approximately 5,000 granular bond portfolios with a face
value of $74 trillions or nearly 60% of global debt securities outstanding. Not only can
I describe how elastic demand for this diverse set of bonds is but also I can discuss how
substitutable safe assets are with other bonds. These are the first estimates of substitution
elasticities in global bond markets, at a granular bond level. They offer a unique view of
financial turmoil – during the Global Financial Crisis of 2007-08, the euro area sovereign
debt crisis as well as the market fallout from the outbreak of the COVID-19 pandemic in
early 2020 – through the lens of bond markets and their investors.

Methodologically, this paper builds on a rapidly growing finance literature that applies
demand system estimation techniques to financial assets (Koijen and Yogo, 2019, 2020,
Koijen, Richmond and Yogo, 2020b). To estimate an international bond demand model
using a broader and more granular set of assets and investors than in any previous ap-
plication, I make several methodological advances. First, the more granular fund and
bond data allow me to control for a more comprehensive set of bond and fund mandate
characteristics to recover precise estimates of demand elasticities. Along with observ-
able characteristics, I can control for unobservable heterogeneous and time-varying risk
aversion at the individual fund level in recognition of the extensive empirical evidence of
its role in the transmission of monetary policy via risk-taking by financial intermediaries
(Rey, 2013, Bauer, Bernanke and Milstein, 2023). Second, I estimate flexible substitution
elasticities across bonds by allowing both heterogeneous investor preferences (as in Koi-

1See inter alia Krishnamurthy and Vissing-Jorgensen (2012), Nagel (2016) for a discussion of likely
factors behind and measurement of the convenience yield priced into US Treasuries.

2In an international setting, the hedging properties of the US dollar or US Treasuries may reflect
a return covariance with non-traded income and the real exchange rate (Coeurdacier and Rey, 2013,
Gourinchas and Rey, 2022).
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jen and Yogo, 2019) and relaxing the functional form which pre-determines dimensions
of market segmentation in Koijen and Yogo (2020), Koijen, Richmond and Yogo (2020b).
The latter innovation implies that investors may have heterogeneous substitution patterns
across bonds of different countries, currencies, credit ratings, maturities or issuer types
(e.g. corporate or government) and brings insights from a long-standing empirical indus-
trial organization literature on demand system estimation (Berry and Haile, 2021, Gandhi
and Nevo, 2021) to demand-based asset pricing. Third, I propose a new instrument to
identify exogenous variation in bond returns in a setting where the market-clearing-based
instruments of Koijen and Yogo (2019, 2020) are not feasible due to observing only part of
bond ownership. Monetary policy shocks of the Fed and ECB along the entire yield curve
(Miranda-Agrippino and Nenova, 2022) spill over heterogeneously across international
bond markets and provide a strong instrument for bond returns.

So what do we learn about safe assets from international bond demand? Bonds normally
perceived as safe assets – US Treasuries and German Bunds – do indeed face some of the
lowest demand elasticities from international mutual funds, supporting the notion that
these bond provide additional benefits to the holders beyond what is captured, for in-
stance, by their expected return or low credit risk. But, more broadly, demand elasticities
increase continuously with bond credit ratings, suggesting some perceived safety benefits
across a range of bonds and not just advanced-economy government debt. In addition,
demand elasticities also vary with the country of issuer and bond maturity. Bonds issued
by the US or advanced economies and with short maturity face the lowest demand elas-
ticities. This heterogeneity in demand elasticities across bonds provides a new measure of
safe asset ’specialness’ – safe assets are those estimated to face particularly low demand
elasticity from private investors.

But not all safe assets are the same. Bond substitution elasticities reveal how shocks to the
return of different safe bonds spill over via portfolio rebalancing to the rest of international
bond markets. Surprisingly, substitutability is not limited to a small pool of highly-rated
sovereign bonds with funds mostly substituting e.g. US Treasuries with German Bunds.
Instead, when US Treasury returns increase, funds decrease their exposure to risky (with
a low credit rating) and emerging market bonds the most in order to accommodate greater
holdings of that safe asset. In contrast, a rise in German government bond returns triggers
sales of primarily euro area bonds, issued by sovereigns with a high credit rating. Hence,
one safe asset plays a global role in international portfolios – US Treasuries are the safe
asset of choice across funds with diverse investment universes. The other safe asset is
regional – German Bunds provide a safe or liquid component in portfolios of primarily euro
area sovereign bonds. These substitution patterns point to substantial segmentation in
fund portfolios consistent with an important role for preferred habitat investors (Vayanos
and Vila, 2021) in international bond markets.

The estimated ”specialness” of safe assets also varies over time. In periods of heightened
market stress US Treasuries face an even lower demand elasticity and this is due to passive
investors buying more of them despite low returns. This paper thus documents systemic
”flights to safety” by investment funds and highlights that fund heterogeneity is key in
understanding these episodes. In addition, the substitutability between safe and risky
assets also deteriorates in times of stress. This pattern is particularly striking when it
comes to the substitutability between US Treasuries and US BBB-rated corporate bonds.
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But it also emerges when examining the substitutability of German Bunds with other euro
area governments during the sovereign debt crisis. One consequence of these findings is
that monetary policies that hope to affect broader funding conditions through changes
in the interest rate on safe assets are not very effective during financial turmoil. At
these times, the private sector substitutability between safe and risky assets is severely
impaired. A back-of-the-envelope exercise tracing the substitution patterns following
hypothetical Fed purchases of $100 billion US Treasuries highlights the stark difference
in portfolio rebalancings under high substitutability of safe assets with risky bonds (low
stress) versus low substitutability (high stress). In tranquil times funds invest $28 billion
of the US Treasury proceeds in BBB-rated US corporate bonds, compared to only $14
billion during financial turmoil.

Finally, why study the bond demand of investment funds in the first place? Funds are not
the only investors with a significant footprint in bond markets – banks, insurance compa-
nies and pension funds, official investors (central banks managing FX reserves, sovereign
wealth funds and, due to unconventional monetary policies, domestic central banks) all
hold significant portions of global debt securities. However, investment fund behaviour
in international bond markets is particularly important for two reasons. First, even if
individual funds are constrained by mandates and liquidity risk, the sector’s objective is
still to deliver returns and hence it is likely to more actively reallocate between bonds
and drive aggregate bond substitution patterns.3 Combined with funds’ rapidly growing
size as a share of global financial sector assets4, this implies investment funds are likely to
play a key role of ’deep-pockets’ marginal investors in bond markets with important asset
pricing implications. Second, investment funds are the leading vehicle for international
portfolio diversification by advanced economies’ residents and are thus key in understand-
ing cross-border portfolio flows.5 Understanding investment decisions by mutual funds is
thus of primary importance for international portfolio capital allocation. Moreover, sys-
temic evidence of cross-border capital flows documents that international investment is
’fickle’, as international capital withdraws sharply during crises – especially debt invest-
ments in the form of cross-border bank lending and portfolio debt investment (Broner
et al., 2013, Forbes and Warnock, 2012, 2021). Thus, more generally, mutual funds’ in-
vestment in international bond markets is likely to play a key role in the cross-border
transmission of shocks via financial markets.

Related literature. This paper provides detailed empirical evidence on the character-
istics of safe asset demand by investment funds. Theoretically, such special demand for
safe assets may have different origins. He, Krishnamurthy and Milbradt (2019) highlight
the interaction between issuer safety or fundamentals and debt size or liquidity. The joint
importance of safety and liquidity also plays a key role in safe asset determination and
gives rise endogenously to convenience yields in Chahrour and Valchev (2022), Arvai and
Coimbra (2023), Coppola, Krishnamurthy and Xu (2023). Safe assets should also provide

3Indeed, Fang, Hardy and Lewis (2022) find that mutual funds, especially foreign ones, have the
highest demand elasticities for country-level sovereign debt.

4See Global Monitoring Report on Non-Bank Financial Intermediation 2022, Financial Stability Board :
https://www.fsb.org/wp-content/uploads/P201222.pdf.

5Maggiori et al. (2018) show that country allocation of mutual fund portfolios reported to Morningstar
aligns closely to aggregate external positions of the US (TIC) and the euro area (CPIS). For the euro
area, Faia et al. (2022) document that only mutual funds take currency risk, other institutional sectors
such as banks and insurers/pension funds do not.

4

https://www.fsb.org/wp-content/uploads/P201222.pdf


investors with better insurance to bad states of the world due to a positive covariance be-
tween their returns and investors’ stochastic discount factor (Coeurdacier and Rey, 2013,
Gourinchas and Rey, 2022). In addition, safe assets are expected to pay their face value
and thus require little production or acquisition of private information about their value
Dang et al. (2009, 2012, 2017) – being traded under symmetric information enhances
their liquidity. The role of safe assets and their supply and demand for international risk
sharing and macroeconomic fluctuation are the focus of Caballero, Farhi and Gourinchas
(2008, 2015, 2017), Gourinchas and Rey (2022, 2016). When global safe assets are in
limited supply, investor demand shocks have profound effects on international imbalances
and output volatility. In these models, the lack of suitable substitutes to safe assets issued
only by a few countries is a key assumption. My paper brings direct evidence on the sub-
stitutability in international bond markets, emphasizing and quantifying the imperfect
substitutability between bonds commonly perceived as safe assets and all others.

A related line of work measures the ’specialness’ of safe assets in terms of convenience
yields – a catch-all non-pecuniary benefit derived from holding safe assets that encom-
passes motives related to safety, liquidity, collateral and repo value, regulatory incentives,
limited participation motives.6 This approach hinges on comparing the yields of suspected
safe assets (with US Treasury bonds and bills receiving particular attention) to other safe
investments that do not provide the same liquidity or safety benefits. Common financial
market spreads used in a US context include US corporate Aaa bond–Treasury (Krish-
namurthy and Vissing-Jorgensen, 2012), general collateral repo–US T-bills (Nagel, 2016),
US government-guaranteed agency debt (Refcorp)–Treasuries (Longstaff, 2004, Flecken-
stein et al., 2014, Del Negro et al., 2017). In an international setting, Du, Im and Schreger
(2018) calculate the covered interest parity deviations between the government bonds of
major advanced economies and the US to measure relative convenience yields. My esti-
mates take a different route to measuring the ’specialness’ of US Treasuries that relies on
investors’ revealed preferences through observed bond holdings. In the process, I also flag
bonds face a continuum of demand elasticities suggesting many assets may provide some
’safety’ benefit to investors. I share this more agnostic view of the identity of safe assets
with Van Binsbergen et al. (2022), Diamond and Van Tassel (2021) and Mota (2020). The
former two papers calculate convenience yields versus a synthetic risk-free rate recovered
from the put-call parity relationship for equity options. Their approach is only feasible for
maturities of up to three years and for advanced countries with liquid derivatives markets.
The demand elasticities studied here can be estimated across a much wider pool of assets
– with different maturities and issued by emerging markets and advanced economies alike.
In the same spirit, Mota (2020) recovers a range of safety premia across US non-financial
corporate bonds using a credit-risk-adjusted corporate spread.

More broadly, the heterogeneity in demand elasticities and substitution patterns esti-
mated here suggest international bond markets are segmented along multiple dimensions,
including bond rating, issuer region and maturity. A growing literature on segmented
markets assumes the presence of preferred-habitat investors in bond or currency mar-
kets.7 It calibrates the footprint of preferred-habitat investors crudely by assuming that

6See inter alia Krishnamurthy and Vissing-Jorgensen (2012), Jiang, Krishnamurthy and Lustig (2018,
2020, 2021a), Krishnamurthy and Lustig (2019), Krishnamurthy and Li (2023), Engel (2020), Engel and
Wu (2018), Valchev (2020), Nagel (2016).

7See Vayanos and Vila (2021), Gourinchas, Ray and Vayanos (2022), Ray et al. (2019), Costain, Nuño
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one sector harbours a strong preference for a given market segment – for example, long-
term bonds are the preferred habitat of insurance companies and pension funds. My
demand elasticity estimates suggest that markets are segmented along many dimensions
and that even within one sector – investment funds – there are both passive investors
following a strict mandate and active arbitrageurs. This insight broadens the scope and
applicability of this class of models to a wider range of issues.

The empirical results of this paper complement a diverse range of regularities uncovered
using granular data on the role of foreign and non-bank investors for international portfolio
diversification and portfolio rebalancing after quantitative easing programmes. Using
sector-level bond holdings data for euro area investors, Faia, Salomao and Veghazy (2022)
highlight the differential home currency bias across different investor sectors in the face of
ECB bond purchases. Tabova and Warnock (2021) reveal that different investors in US
Treasuries (domestic and foreign private versus foreign official) have different preferred
habitats along the yield curve and earn different returns on their holdings as a result.
Bergant, Fidora and Schmitz (2018), Joyce, Liu and Tonks (2014), Koijen, Koulischer,
Nguyen and Yogo (2020a) build investor flows from security-level data to measure sectoral
responses to asset purchases as part of quantitative easing programmes. Beck et al. (2023)
unravel the ownership of euro area investment funds to trace the patterns of European
financial integration.

Methodologically, my work builds on a rapidly growing characteristics-based asset de-
mand literature. Koijen and Yogo (2019) estimate demand for US equities, while Koijen,
Richmond and Yogo (2020b) extend their methodology to international demand for US
and UK equity in a Nested Logit model. Of particular relevance to my research are the
papers by Koijen and Yogo (2020) and Jiang, Richmond and Zhang (2021b) who estimate
a demand system for international portfolio investment aggregated to three asset classes
(equity, short- and long-term debt) at the country level. In addition, Koijen et al. (2020a)
estimate demand for euro area sovereign debt again aggregated to the country level to
examine the effects of the European Central Bank’s quantitative easing programme. For
bonds, in particular, Bretscher et al. (2020) estimate institutional demand for US corpo-
rate bonds at the security level using the methodology of Koijen and Yogo (2019), while
Fang, Hardy and Lewis (2022) estimate sectoral demands for the aggregate government
debt of advanced and emerging market economies. In a similar spirit, Eren, Schrimpf and
Xia (2023) estimate sectoral demand for aggregate US Treasury debt8. Compared to these
empirical studies, the demand estimation in this paper is based on much more granular
and broad investor and bond data. On the bond side, I model demand for fine bond port-
folios constructed bottom-up from security-level holdings and bond characteristics. The
bonds are international, of all credit ratings and issued by governments, supranational
agencies as well as corporates. On the investor side, the unit of my analysis is a single
mutual fund matched to information related to its mandate such as the asset classes it
can invest in, its investment area as well as the type of bonds (government or corporate)
that it tends to invest in. In addition, I make substantial progress on the estimation

and Thomas (2022), Kekre, Lenel and Mainardi (2022).
8To obtain exogenous variation in US government bond yields over time, Eren, Schrimpf and Xia

(2023) also use high-frequency Fed monetary policy shocks. The identification in my paper utilizes not
only the time variation in monetary policy shocks around both Fed and ECB announcements but also
the heterogeneous effects of these by bond maturity, country and currency as a way to obtain variation
across a broad range of international bonds.
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methodology in order to capture demand for this granular and broad set of assets and
estimate flexible substitution patterns among them.

In the broader context of asset pricing, my demand estimates contribute to a long-standing
literature using index additions and deletions as exogenous demand shocks to document
downward-sloping demand curves for financial assets (Shleifer, 1986, Harris and Gurel,
1986, Chang et al., 2014, Chen et al., 2004, Petajisto, 2011). Recently, Gabaix and Koijen
(2022) examine how the implied imperfect substitutability between financial assets can
generate and exacerbate macroeconomic fluctuations.

Outline The remainder of the paper proceeds as follows. In Section 2 I give a brief
overview of the dataset, its coverage and the main patterns of bond investment by mutual
funds. Section 3 lays out the empirical demand model and implied demand elasticities, as
well as the identification strategy. In Section 4, I present the main estimation results and
summarize the demand elasticities. Section 5 discusses what estimated elasticities imply
about the role of different safe assets in international bond markets. Section 6 concludes.

2 Data

I collect a dataset of security-level bond holdings by individual open-ended mutual funds
and ETFs from Morningstar Direct – a platform providing end-investors with investment
fund information and recommendations. The holdings information is based on fund re-
porting and verified by Morningstar against available regulatory reports.9 I limit the fund
universe studied in this paper to funds domiciled in the two largest currency areas – the
US and euro area. Five domiciles within the euro area – Luxembourg, Ireland, Germany,
France and Netherlands – suffice to cover 90% of overall debt securities held by euro area
investment funds10, so I focus on these largest euro area domiciles.

Notably, throughout the analysis the investor unit is an individual fund (e.g. ”Vanguard
Total International Bond Index Fund”), rather than the umbrella institution (”Van-
guard”). This allows me to supplement the dataset with fund-specific characteristics
relevant to the portfolio allocation decision – country of domicile, fund type (either fixed
income, which invest solely in fixed income securities, or balanced, which invest in both
bonds and equity), style (index fund, ETF or other), investment area, Morningstar fund
category, with an institutional or retail investor base, size (assets under management or
AUM), net fund flows, total fund returns. Portfolio holdings are most often reported at
quarterly frequency11 , while all other time-varying fund variables (size, returns, flows) are

9My own checks comparing the portfolios reported by US fixed income funds to Morningstar with their
mandatory SEC reports suggests funds provide accurate security-level information. In an influential line
of research using Morningstar security-level holdings, Maggiori, Neiman and Schreger (2018), Coppola,
Maggiori, Neiman and Schreger (2020) and Beck et al. (2023) also confirm the accuracy of these. On the
other hand, Chen, Cohen and Gurun (2021) find that some bond funds strategically misreport aggregated
statistics such as overall bond portfolio risk in order to obtain a better risk-return rating fromMorningstar.
I therefore steer clear of using any aggregated portfolio statistics on fund style from Morningstar and
solely use the security-level holdings information throughout the analysis.

10Source: Security Holdings Statistics by Sector (SHSS), European Central Bank.
11Some larger investment funds report portfolio holdings at higher frequencies. Given the systematic

differences in fund coverage in quarter-end versus within-quarter dates, the baseline empirical analysis is
at quarterly frequency. Estimating bond demand on monthly fund holdings data yields similar results.
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monthly. The estimation sample starts in 2007, when Morningstar fund portfolio holdings
coverage becomes significant, and ends in December 2020.

Overall, the US and EA funds in the collected Morningstar data hold around $8.5 trillion
worth of debt securities and manage a total of around $11 trillion assets as of end-2020.
Comparing total security-level holdings to national financial accounts statistics from the
Federal Reserve Board (FRB) for US funds and from the European Central Bank (ECB)
for EA funds suggests the dataset covers a substantial portion of aggregate fund debt
security holdings. For the three largest fund domiciles the coverage is very high – 80%
for US funds by end-2020; over 70% for Luxembourg funds; and around 65% for Irish
funds (Figure 1). Funds based in Germany, France and the Netherlands are less well-
represented in the fund-security-level dataset, but the growing role of Luxembourg- and
Ireland-domiciled funds in overall euro area bond investment makes this less of a concern
in the latter part of the sample. Similarly, funds in my dataset account for around 90%
of the total AUM of US fixed income and balanced funds and 40% of the respective euro
area funds’ AUM (Appendix Figure A.15).

Figure 1: Morningstar debt security holdings: representativeness vs financial accounts

0
.2

.4
.6

.8
1

2007q1 2010q3 2014q1 2017q3 2021q1

US Euro area Luxembourg
Ireland Germany France
Netherlands

Share of debt securities holdings

Next, I match the fund portfolio holdings from Morningstar using the reported security
identifier (either ISIN or CUSIP) to extensive bond pricing and reference data. I start by
classifying all securities using reference data from Refinitiv Eikon. I collect information
on the instrument type (e.g. bonds, asset-backed securities, derivatives, etc.), as well as
key characteristics such as the issuer type (e.g. government, municipal, corporate bonds),
coupon type (e.g. floating vs fixed rate), whether a bond is inflation-protected, convertible,
perpetual. Since my objective is to characterize the demand for safe assets through their
substitutability with comparable assets, I limit the bond universe to relatively ’plain’
bonds – government and corporate bonds excluding floating-rate notes, inflation-protected
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bonds, convertible and perpetual securities, as well as US municipal bonds whose demand
is heavily influenced by tax exemptions for local investors.

Figure 2 shows a breakdown of all funds’ debt security holdings into the broad security
types I use to define the bond universe of study. Government or supranational bonds
together with corporate bonds account for the majority (80%) of mutual fund bond hold-
ings. Each of these is split into ’plain’ bonds as described above and all other bonds. Plain
bonds clearly dominate, such that the exclusion of ’other’ government and corporate bonds
removes only 10% of mutual fund bond holdings from the analysis. Asset-backed secu-
rities (ABS) account for almost all the other debt securities intentionally excluded from
the analysis, with around 20% of Morningstar funds’ debt holdings. Data on ABS has
somewhat worse coverage than ’plain’ bonds and collecting these is left for future work.
The share of other securities (derivatives, perpetuities, other – some of which misclassified
by Morningstar as debt securities) is negligible.

Figure 2: Breakdown of fund debt security holdings by type
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With this list of ’plain’ government and corporate bonds in hand, I collect historical
data on month-end bond prices, yields12 and total returns from Refinitiv Datastream.
Coverage of the pricing data is adequate given the diverse set of international bonds in fund
portfolios, such that the priced bonds account for 60% of the raw reported Morningstar
fund holdings (out of the 70% overall holdings of government and corporate ’plain’ bonds).
I supplement the pricing data with the following time-varying information about the
bonds: amounts outstanding, credit ratings from three global rating agencies (Fitch,
Moody’s, DBRS), and exchange rates of their currency of denomination against the US
dollar. Finally, several static variables complete the set of bond characteristic needed
for the analysis: bond maturity date (used to calculate bond’s residual maturity over
time), currency of denomination, ultimate parent issuer type (government, supranational

12I use yield to maturity for bonds that are neither callable nor putable and yield to worst in the case
of bonds with optionality
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or corporate), issuer country & country of risk13 , bond seniority (ranging from a top rank
of ”Senior Secured” to the lowest of ”Junior Subordinated Unsecured”).

The bond universe that this data collection procedure leaves me with consists of approx.
85,000 unique bonds with a total face value of $74.3 trillion as of end-2020. Thus the
bonds included in the analysis in this paper account for 57% of total debt securities
outstanding worldwide14. The coverage is even higher for securities issued by general
government – 78% of the worldwide total. Of all debt securities issued by other entities
(financial and non-financial companies, international organizations), the bond dataset
collected here corresponds to 33%, which primarily reflects the intentional exclusion of
asset-backed securities and other structured instruments from the analysis.

Bond buckets Estimating demand for individual bond ISINs is not desirable in this
application for two key reasons. First, as time passes individual bonds approach maturity.
Suppose a fund seeks a relatively stable weighted average maturity of its bond portfolio
and the asset manager substitutes a bond nearing maturity for another bond of the same
issuer, with the same credit or currency risk but closer to the fund’s targeted maturity.
This type of mechanical portfolio churn is not informative about the fund’s economic
motives but would require adding many zero portfolio weights for individual bonds that
are simply being replaced by similar instruments. Second, I have a much broader set of
assets than in any other asset demand system estimation so far. This is a paper describing
the global bond market and the number of securities included reflects this ambitious
scope. However, modelling the demand for over 85,000 individual bonds and calculating
substitution elasticities between each pair poses a significant computational burden that
is not warranted by the macro-financial research question addressed here. In addition, the
elasticities estimated from portfolio allocations to single securities are likely to be much
higher than the substitution elasticities between more aggregated bond portfolios, as it
may be easier to find a substitute for e.g. a single corporate bond (another bond of the
same company or of a similar company would presumably do) but much harder to find a
good substitute for all US corporate bonds rated ”BBB” (Chaudhary et al., 2022).

In keeping with a long asset pricing literature that groups individual securities into portfo-
lios along key asset characteristics (Fama and French, 1993, He, Kelly and Manela, 2017),
I group bonds into bond buckets that capture differences along five key risk dimensions
most relevant for international investors. These include: (i) issuer country of risk – 140
countries; (ii) issuer type – three categories (sovereign, supranational or corporate); (iii)
bond currency of denomination – around 60 currencies; (iv) credit rating – five bond
rating scales (”AAA-AA”, ”A”, ”BBB”, ”BB”,”B-D”)15, and (v) residual maturity – four

13The two countries can be different especially for large multinational companies with financing sub-
sidiaries located in small financial centres such as the Cayman Islands or Luxembourg. Whenever avail-
able, I use country of risk in the analysis as the country of the bond issuer.

14See Bank for International Settlements, Debt security statistics: https://www.bis.org/

statistics/secstats.htm?m=202.
15Specifically, a bond is classified into the ”AAA-AA” rating bucket if it has a maximum rating from the

three rating agencies included in the analysis (Fitch, Moody’s and DBRS) of AAA, A+, A, or A-. Similarly
a ”BBB” rating bucket contains bonds with a rating of BBB+, BBB, or BBB-. This grouping of bond
ratings is closely aligned with regulators’ credit assessment frameworks used to assess the credit quality
of collateral used in monetary policy operations. For example, see the Eurosystem credit assessment
framework (ECAF) at https://www.ecb.europa.eu/paym/coll/risk/ecaf/html/index.en.html.
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categories (under 1 year, 1-5 years, 5-10 years, over 10 years).

This bucketing of bonds simplifies the portfolio allocation problem that I describe and
estimate in the next sections, as I now model the choice among some 5,000 bond buckets
rather than 85,000 bonds. At the same time, I still make the most of the security-level data
that I have by building all variables describing a given bond bucket bottom-up (rather
than, for example, using off-the-shelf bond indices) from the characteristics of individual
bonds that enter the fund sectors’ portfolios at any point during the estimation sample.
As a concrete example, this means that there is no mismatch between the bonds used to
calculate a given bucket’s total return and the bonds actually held in fund portfolios. In
particular, bond returns, yields, prices, residual maturity, bond seniority rank are the face-
value-weighted averages of the respective individual security characteristic across bonds
in a particular bond bucket; bucket-level amount outstanding is the sum of bond amounts
outstanding converted into US dollars.

Figure 3 provides a snapshot of the 30 most important bond buckets in the dataset by the
overall market value held by mutual funds as of end-2020. Unsurprisingly, given the size
and importance of US Treasury markets, the three largest buckets consist of US Treasuries
of various maturities. For instance, ”USsov USD AAA-AA 1-5y” stands for US sovereign
bonds, denominated in US dollars, rated in the broad rating scale of ”AAA-AA”, with
a remaining maturity of 1 to 5 years. US corporate bonds of different maturities and
credit ratings come next as single buckets with large fund holdings, followed by advanced
economy sovereign bond buckets (issued by Italy, Germany, France, Japan and the UK).
For the remainer of this paper, I use these bond buckets everywhere in the analysis and
sometimes use ”bond”, ”bond bucket” and ”bucket” interchangeably in the discussion,
unless explicitly stated otherwise.
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Figure 3: Top bond buckets by market value of fund holdings as of end-2020
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Fund types The second dimension of data granularity that deserves attention is at
the level of the investor. The fund holdings dataset that I collect from Morningstar is
more granular than previous work using demand system estimation. As flagged earlier,
I observe the holdings of each individual fund rather than the umbrella institution as in
Koijen and Yogo (2019), Koijen et al. (2020b).16 This granularity allows me to control for
fund characteristics (both observable and unobservable) in the estimation of the demand
model and improve the precision of estimates. However, the smaller the investor unit,
the smaller the number of bonds it holds on average in its portfolio. As Table 1 shows,
the median fund holds around 20 bond buckets. This implies some pooling of funds will
be required in the estimation but pooling over all funds is likely to overlook important
differences across investors with heterogeneous bond demand.

16A list of the largest 30 funds by their overall bond holdings as of end-2020 is provided in Appendix
Table A.8.
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Table 1: Summary of funds

Fund Type
Number of

Funds %All-fund AUM %Outstanding
AUM USDmil

(Median)
AUM USDmil

(90th Percentile)

Number of
Buckets Held

(Median)

Number of
Buckets Held

(90th Percentile)

US bond passive 524 20 0.95 294 3,446 18 86

US bond active 676 29 1.35 384 4,404 27 76

EA bond passive 949 9 0.62 142 1,069 22 75

EA bond active 1,006 13 0.73 187 1,547 31 80

US balanced passive 135 8 0.10 316 3,876 8 85

US balanced active 203 13 0.25 350 4,013 20 103

EA balanced passive 375 2 0.05 62 516 9 47

EA balanced active 595 5 0.15 89 876 13 72

A close look at fund sector structure and portfolio allocation suggests at least two ob-
servable dimensions along which funds are very different from each other. First, Table 1
reveals that funds domiciled in the euro area (EA) are more numerous but much smaller
in terms of assets under management (AUM) than their US counterparts. In addition, a
long literature in international finance has documented a strong home and home currency
bias in international bond portfolios (Coeurdacier and Rey, 2013, Maggiori, Neiman and
Schreger, 2018). These two considerations imply that funds domiciled in each of the two
currency areas included in the analysis – the US and euro area – might have different
demand for bonds and the estimation should allow for this heterogeneity. Second, the
summary statistics of the portfolio allocation of balanced versus fixed income funds in
Appendix Table A.9 suggests the asset classes that funds are allowed to invest in are
another differentiating feature. Balanced funds (especially in the EA), who have expo-
sures to bonds and equity alike, seem to hold on average a safer portfolio of bonds than
fixed income funds. This is evident in the higher portfolio weight of ”AAA-AA” rated
bonds, of short-term bonds with maturity under 1 year, as well as in their preference for
sovereign over corporate issuers. Thus, at least four broad fund types emerge as a useful
delineation: US fixed income, EA fixed income, US balanced and EA balanced funds.

The investment funds in the dataset also contain some index and ETF funds which track
a particular bond index with little leeway to deviate from the portfolio shares implied
by index weights. As the methodology section clarifies, a key object of interest in the
estimation of bond demand is the sensitivity of funds to changes in relative bond returns.
Index funds are by mandate not allowed to take advantage of such variation in returns
and should therefore be modelled separately. In addition, recent literature emphasizes
that even non-index funds are managed against a benchmark and may be dis-incentivised
to deviate their portfolio allocation too far from the benchmark index weights (Brennan
and Li, 2008, Cremers and Petajisto, 2009, Kashyap, Kovrijnykh, Li and Pavlova, 2021).
To separate both de jure and de facto passive funds from more active ones, I therefore
adapt the active share definition of Cremers and Petajisto (2009) to measure the extent
to which funds’ bond portfolios deviate from their benchmark. Since data on multiple
benchmark indices and their historical compositional weights are difficult to obtain, I
follow Koijen, Richmond and Yogo (2020b) and define a fund’s benchmark based on
the observed holdings. The benchmark weight of each bond bucket in a given fund’s
portfolio corresponds to the share of that bucket in the total market value of all bond
buckets ever held by that investor (i.e. his benchmark). The Bond Active Share is then
calculated at every quarter as the sum of absolute deviations of the observed portfolio
shares from the benchmark weights, divided by 2. The distribution of the resulting active
share measure (averaged over time) across funds of the four broad fund types in Appendix
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Figure A.17 highlights considerable dispersion in the degree of activeness even within fund
type. Therefore, I split each of the four broad fund types into active and passive funds
– funds with above-median Bond Active Share, on average over time, are classified as
Active; those with below-median Active Share are Passive.

Thus, I arrive at eight main fund types – US fixed income Passive & Active, EA fixed
income Passive & Active, US balanced Passive & Active and EA balanced funds Passive
& Active. Figure 4 plots the evolution of assets under management of the final set of
funds for estimation, split into these eight fund types. US fixed income funds are the
most sizeable, followed by EA fixed income funds, US balanced and finally EA balanced
funds. The empirical methodology motivated and developed in the next section allows all
fund preferences for bond characteristics to vary across these eight fund types. Within
each fund type, granular fund-level variables also control for mandate-related sources
of bond demand heterogeneity (controls for geographical mandates, home country bias,
corporate/ government bond allocation rules) in order to precisely estimate the fund-type-
specific preference parameters.

Figure 4: Total fund AUM by fund types
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To recap, I build a state-of-the-art dataset of international bond holdings from granular
yet comprehensive fund-security-level data. I aggregate bond holdings into fine buckets
suited to study international finance questions about safe asset status and spillovers via
bond market substitutions. I retain fund-level holdings data but group funds into eight
economically meaningful types with potentially heterogeneous bond preferences. The
next section develops the empirical methodology applied to this dataset to estimate the
international bond demand of mutual funds.
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3 Methodology

In this section I outline the bond demand specification, explain how this is implemented
empirically and derive the demand elasticities which are used to characterize safe assets
and describe bond substitution pattern. The methodology builds on two seminal con-
tributions in the rapidly growing literature on demand-based asset pricing. Like Koijen
and Yogo (2019), demand for bonds is a function of bond characteristics and depends
on investor preferences, motivated by a standard mean-variance portfolio optimization
problem. The international portfolio application implies that both bond local currency
returns and exchange rate fluctuations enter the investor portfolio choice problem as in
Koijen and Yogo (2020).

To account for the greater granularity of holdings and breath of assets modelled in this
paper relative to previous research, I make four important methodological deviations from
these papers. Here, I flag them briefly before proceeding to the detailed discussion of the
bond demand methodology. First, I allow for fund-specific and time-varying risk aversion
as a source of time variation in portfolio allocations. Second, I relax the Nested Logit
restrictions imposed in Koijen and Yogo (2020) to model a diverse set of assets by including
heterogenous investor preferences for all potential nest fixed effects. This is important
in an international setting with granular assets, where multiple potential dimensions of
market segmentation along country of issuance, currency, credit risk or maturity may
exist. Third, I am able to control for a much broader and more granular set of both
bond and fund characteristics in the estimation – especially when comparing the results
to international portfolio investment demand aggregated at the country level as in Koijen
and Yogo (2020) and Jiang et al. (2021b). Finally, I develop an alternative identification
strategy using high-frequency monetary policy shocks to the entire yield curve in order
to isolate exogenous variation in international bond returns in an application where the
market clearing condition (as used for identification by Koijen and Yogo (2019, 2020)) is
not a feasible source of identification due to the breadth of assets being modelled.

3.1 International bond portfolio allocation

I start by deriving the bond demand specification used for the empirical analysis of in-
ternational bond demand. Like in Koijen and Yogo (2019), funds face a standard mean-
variance optimization problem with a short-selling constraint to model the long-only bond
holdings of investment funds. Given the international portfolio allocation application, in-
vestors value future wealth converted in their domestic currency such that bond local
currency returns and exchange rate fluctuations enter their problem jointly as in Koijen
and Yogo (2020).

Investment funds indexed by i = 1, . . . , I allocate their bond portfolio across |Ni,t| risky
bonds (where Ni,t ⊆ {1, . . . , N} and N denotes the number of all bonds modelled in the
demand system) and one outside asset. Bonds can be denominated in different currencies
and their gross returns between period t and t+ 1 in terms of investor i’s home currency
are stacked in the |Ni,t|-dimensional vector Ri,t+1. The return on the investor-currency-
specific outside asset isRi,t+1(0) and for expositional simplicity is assumed to be risk-free.17

17In Appendix B I relax this assumption to allow for a risky outside asset whose returns may be
correlated with bond returns. A similar empirical demand specification follows, only the interpretation

15



Portfolio choice is described by a two-period international capital asset pricing model
(ICAPM). Investor risk preferences are described by more general constant relative risk
aversion (CRRA) objective function than the log-utility specification in Koijen and Yogo
(2019).18 This means that investors may have different and time-varying risk aversion
denoted by ρi,t. This modelling choice reflects extensive empirical evidence of time vari-
ation in aggregate risk aversion (Rey, 2013, Bauer, Bernanke and Milstein, 2023), while
also allowing for heterogeneous risk preferences across funds. Fund i with risk aversion
ρi,t at time t maximizes expected utility from one-period-ahead wealth Ai,t+1 subject to
budget and short-selling constraints by choosing portfolio weights vector wi,t in terms of
expected returns covariances and shadow prices:

max
wi,t

Ei,t

[A1−ρi,t
i,t+1

1− ρi,t

]
s.t. Ai,t+1 = Ai,t[Ri,t+1(0) +w′

i,t(Ri,t+1 −Ri,t+1(0)1)] (1)

wi,t ≥ 0 (2)

1′wi,t ≤ 1 (3)

Following Koijen and Yogo (2019), I assume log-normal bond returns, approximate port-
folio returns as in Campbell and Viceira (2002) and denote the Lagrange multipliers on
the short-selling constraint (2) by the vector Λi,t and the multiplier on constraint (3) by
λi,t to derive fund i’s optimal portfolio weights:

wi,t = (ρi,tΣi,t)
−1
(
Ei,t

[
ri,t+1 − ri,t+1(0)1

]
+
σ2
i,t

2
+ Λi,t − λi,t1

)
(4)

which is exactly the same as equation (A4) in Koijen and Yogo (2019) apart from the
addition of a time-varying risk-aversion parameter possibly different from one and returns
being investor-specific due to funds measuring them in their home currencies.

Funds here differ in their optimal bond portfolio allocation for several reasons. First,
different risk preferences ρi,t affect the scale of fund i’s entire risky bond portfolio but do
not shift the allocation across risky bonds. Second, investors may base their allocation
on different return expectations (Ei,t), variance (σ2

i,t) and covariance (Σi,t) estimates.
The model is ambiguous regarding the cause of the different evaluations of bond return
moments across investors – they could be interpreted as different beliefs or unobserved
investment constraints. Last, it is worth emphasising that the dimension of the optimal
portfolio weights vector wi,t (given by |Ni,t|) also varies across investors but is exogenous
to the demand system and comes from the observed fund investments.19 The demand
system can thus flexibly capture continuous belief and risk preference heterogeneity as
well as discrete constraints on the investment universe of specialised funds.

of why investors value bond characteristics becomes broader and reflects the relation between bond
characteristics and the return covariance of bonds and the outside asset.

18Koijen and Yogo (2019) instead start from a standard multi-period portfolio choice model with
log-utility (i.e. homogeneous risk aversion of 1 across all investors, at all periods t) which simplifies
to independent one-period-ahead portfolio allocation problems at each t. In both cases, the myopic
portfolio choice modelling decision is well-suited to short-term investors such as investment funds, whose
shareholders are sensitive to recent fund performance.

19My baseline specification assumes |Ni,t| equals the number of bond buckets in fund i’s portfolio
during the current quarter.
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Bringing (4) directly to the data is a challenge since it requires estimates of 5,000 expected
returns, all their variances and covariances. Koijen and Yogo (2019) show that assuming
a fairly general factor structure in return beliefs and that observable and easy-to-measure
asset characteristics determine asset loadings on common factors, one could instead model
portfolio weights as a function of an asset’s own characteristics.20 In Appendix B, I follow
closely Koijen and Yogo (2019) to derive the portfolio weights on any bond n in the
investment universe of investor i (wi,t(n)) and on the outside asset (wi,t(0)) as logistic
functions of bond characteristics and fund risk aversion:

wi,t(n) =

1
ρi,t

exp
{
x̂i,t(n)

′β̂i
}

1 +
∑Ni,t

m=1
1
ρi,t

exp
{
x̂i,t(m)′β̂i

} (5)

wi,t(0) =
1

1 +
∑Ni,t

m=1
1
ρi,t

exp
{
x̂i,t(m)′β̂i

} (6)

wi,t(n)

wi,t(0)
=

1

ρi,t
exp

{
x̂i,t(n)

′β̂i
}

(7)

where x̂i,t(n) contains a comprehensive set of exogenous bond characteristics discussed in
greater detail in the next subsection, as well as unobservable demand disturbances εi,t(n).

The coefficients on these characteristics β̂i capture investor i’s beliefs about how expected
excess returns and bond factor loadings relate to the bond characteristics. Importantly,
demand of all bonds depends on fund-specific risk aversion ρi,t. Note that one could
simplify the expression (7) by including − log(ρi,t) in the vector of time-varying investor
and bond characteristics x̂i,t(n). A panel estimation then can account for heterogeneous,
time-varying risk aversion using investor-time fixed effects, as the next section explains in
greater detail.

The outside asset with portfolio weight wi,t(0) captures either bonds not reported by the
fund or excluded from the estimation, or other assets in fund portfolios (e.g. equity for
balanced funds and cash for fixed income ones). For estimation purposes, expressing bond
demand as a ratio of each bond holding relative to an investor-specific outside asset weight
is clearly more convenient, as it decreases the dimensionality of the empirical estimation
problem from one where bond n’s allocation depends on the characteristics of all bonds
in investor i’s choice set (equation 5) to one where demand is a function only of the
characteristics of bond n (equation 7).

The specification in (7) is a simple Logit model but thanks to the heterogeneity in prefer-
ence parameters β̂i across investors and the rich bond characteristics included in x̂i,t(n),
it implies more flexible substitution patterns than the Nested Logit model of international
portfolio investment in Koijen and Yogo (2020). This flexibility is necessary in my setting
studying global bond markets at a granular bond level as ex ante restrictions regarding
the dimension along which bonds of different countries, currencies, issuers, ratings and
maturities may be better or worse substitutes are hard to justify.21 For the heterogeneous-

20There is a clear parallel from the empirical industrial organization (IO) literature starting with Lan-
caster (1971), where demand for products is modelled as a function of their own prices and characteristics
rather than as a function of the prices and quantities demanded of all the products in the consumer choice
set. The objective in both IO and asset pricing applications is to reduce the dimensionality of the em-
pirical demand model.

21The Nested Logit specification in Koijen and Yogo (2020) assumes long-term bonds of all countries
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investor Logit in equation (7) to be a generalization of a Nested Logit model of demand,
the vector of bond characteristics x̂i,t(n) needs to contain fixed effects for all bond char-
acteristics along which investors may perceive markets to be segmented (Berry, 1994).
These could include bond country, currency, rating, maturity or issuer type (e.g. govern-
ment vs corporate). I turn next to the empirical specification that allows me to flexibly
estimate substitution patterns in global bond markets.

3.2 Empirical specification

This subsection clarifies how I translate the general characteristics-based demand function
given by (7) to an empirical specification tailored to model international demand for
bonds. This paper’s primary objective is to estimate rich substitution patterns to describe
empirically international bond market segmentation and study transmission of shocks
from one market segment to all other segments where investment funds are active. All
specification choices are made with this goal in mind.

I select a comprehensive set of bond characteristics x̂i,t(n) that capture exposure to key
risk factors. The key time-varying return variable that investors care about is the pre-
dicted excess bond return of each bond n, h periods ahead, which I denote by perhχ(i),t(n).
This variable captures in a single index time variation in the bond’s local currency return
as well as exchange rate fluctuations of the bond currency relative to investor i’s home
currency. The relevant bond returns are defined in terms of the currency of the investment
fund – US dollar for US-domiciled funds, euro for euro area funds.22

Funds (indexed by i) are assumed to predict bond excess returns in their home currency
perhχ(i),t(n) using a few key variables observable at time t. Following Koijen and Yogo

(2020), I use predictive bond return regressions to obtain a proxy of perhχ(i),t(n). Specifi-
cally, I estimate two predictive panel regressions of returns h quarters ahead – one with
realized bond excess return in US dollars rx$,t+h(n) as the left-hand-side variable (rel-
evant to US-based funds) and one with euro returns rxe,t+h(n) (relevant for euro area
funds). The following predictive panel regression is estimated at monthly frequency over
the sample period 2002-2020:

rxχ(i),t+h(n) ≡ rχ(i),t+h(n)− yhχ(i),t

= Ahχ(i) yt(n) +Bh
χ(i) reri,t(n) +

3∑
f=1

Ch
χ(i),f uspcf,t +

3∑
f=1

Dh
χ(i),f depcf,t + F h

χ(i),n + Eχ(i),n,t+h

(8)

where rχ(i),t+h(n) is the total return on bond bucket n23 between month t and t+h in the
investor’s home currency χ(i); yhχ(i),t is the time-t risk-free rate with term h in the home

are perceived as equally good substitutes for each other, while different asset classes (e.g. short- and
long-term debt may not be as substitutable).

22In practice, most shares of US funds are indeed denominated in US dollars and likely held by US
investors. The majority of EA-based funds also report their holdings and denominate their shares in
euros but with more exceptions, where at least some fund share classes are sold in other major currencies
such as USD, GBP or JPY.

23This is calculated as the face-value weighted average of total returns on individual bond returns in
bucket.
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currency of investor i24; yt(n) is the yield-to-maturity25 likely to predict the bond return
in local currency; uspcf,t stands for principal components extracted from the US Treasury
yield curve with f = {1, 2, 3} capturing level, slope and curvature factors, respectively;
depcf,t are the equivalent yield curve factors from German government bonds26; rerχ(i),t(n)
is the log real exchange rate defined as units of the home currency of each investor χ(i)
(i.e. US dollars or euros) per bond n currency27; F h

χ(i),n is a bond bucket fixed effect
separately estimated for bond returns in terms of the home currency of investor i and of
horizon h quarters; and Eχ(i),n,t+h is a forecasting error term.

This predictive regression improves on the one proposed in Koijen and Yogo (2020) in three
ways: (i) the excess returns are at a much more granular bond-bucket level rather than at
the aggregate country level, so I control for a bucket fixed effect rather than country fixed
effect; (ii) I add yield curve factors to the predictive variables in line with a long-standing
literature on bond return predictability (Fama and Bliss, 1987, Cochrane and Piazzesi,
2005) to improve the fit to my more granular bond data; (iii) I estimate (8) separately
for each investor currency, whereas Koijen and Yogo (2020) predict returns only in US
dollar terms. Unlike Koijen and Yogo (2020), I assume that the risk-free rate is given
by the euro and dollar OIS rates, respectively, and obtain bond predicted excess returns
relative to these from independent predictive regression in terms of different currencies.
This approach is more flexible, as it effectively allows investors to have different predictive
models of returns in different currencies.

Thus, the bond return variable that enters the demand system’s bond characteristics
x̂i,t(n) is the fitted bond excess return from predictive regressions (8):

perhχ(i),t(n) = Âhχ(i) yt(n) + B̂h
χ(i) rerχ(i),t(n) +

3∑
f=1

Ĉh
χ(i),f uspcf,t +

3∑
f=1

D̂h
χ(i),f depcf,t

(9)

The horizon h that is most relevant to investment funds in my dataset turns out to be
3 months ahead, which aligns well with their predominantly quarterly portfolio reporting
practices. In Section 4, I also report predictive regression results for bond returns 12 and
1 month ahead. Results are robust to these different return horizons.

In addition to predicted excess returns, the bond demand equation controls for a number

24This correspond to the USD or EUR OIS rates, respectively, with term h.
25Or yield-to-worst if bond is callable or putable.
26The bond asset pricing literature has emphasized the predictive power of yield curve factors for excess

returns on Treasuries in particular (Fama and Bliss, 1987, Cochrane and Piazzesi, 2005). Adding a factor
extracted from forward rates as in Cochrane and Piazzesi (2005) does not increase the predictive power
in this bond sample.

27Real exchange rates fluctuations tend to mean-revert as their equilibrium value is relatively stable.
Thus an appreciated currency can be expected to depreciate in future and thereby reduce the bond return
received by the foreign investor, implying the coefficient Fh

i should be negative.
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of other bond and fund characteristics, which are included in the vector x̂i,t(n) as follows:

x̂i,t(n) =



perhχ(i),t(n)

x1
t (n)

x2(n)
bi(n)
ζi,t

log(εi,t(n))

 (10)

First, vector x1
t (n) includes bond characteristics with some time variation - the face-

value-weighted average residual maturity and seniority rank of all bonds in bucket n, as
well as the total face value of all bonds in the bucket capturing the relative liquidity of
that bucket28. Second, a vector of static bond characteristics x2(n) contains categorical
variables already used to define bond buckets – broad credit rating scale dummies, bond
country (of risk) and currency (of denomination) fixed effects. In addition, I control
for time-invariant bilateral (fund-bond) dummies collected in vector bi(n) which capture
aspects of the fund mandate and whether each bond complies with them. These include:
(i) a home bias dummy, which equals one if a bond’s country of risk is the same as
the fund’s domicile; (ii) a home currency bias dummy, which equals one if a bond is
denominated in the fund’s home currency; (iii) a binary variable that equals one if a
bond’s country of risk is within the fund investment area (as reported to Morningstar);
(iv) three dummies that capture the correspondence between a fund being government or
corporate bond-focused and a government or corporate bond indicator – one that equals
one if a government bond fund is holding a government bond, another that equals one if
a corporate bond fund holds a corporate bond, and a third that equals one if a mixed or
total bond fund holds a government bond29.

Importantly, the control variables include investor-time fixed effects ζi,t which capture
time-varying changes in investor-specific risk appetite. This adds more structure to the
interpretation of the residual demand for bonds and helps isolate systemic changes in
investor behaviour from their relative portfolio allocation across bonds. The residual of
this demand system log(εi,t(n)) now corresponds to unexplained variation in the investor-
specific bond allocation at every period t.

The general demand equation (7) allows for all coefficients to be investor-specific. Imple-
menting this is not feasible in most empirical settings where the presence of many small
investors with a limited number of investments makes estimating individual preferences

28To make face value comparable across bonds with different denomination currencies, this needs to
be converted into a common currency - that of the funds whose portfolio decision it enters. To avoid
introducing endogeneity in the face value control variable, the conversion is done using the bilateral
exchange rate lagged by a year, i.e. at quarter t− 4.

29To classify funds as government, corporate or mixed/total bond funds, I calculate the average share
they hold of corporate versus government bonds for the full sample. If a fund holds less than 20% of
corporate bonds, it is classified as a government bond fund; if it holds more than 80% in corporate
bonds, it is a corporate fund; and anything in the middle is a mixed or total bond fund. I use this
custom classification rather than the Morningstar fund category, as the latter provides a fine split of US
fixed income funds into government and corporate but neither separates international bond funds into
government versus corporate ones nor gives an indication what type of bonds balanced funds are allowed
to invest in.
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for many bond characteristics imprecise. For instance, while Koijen and Yogo (2019)
and Koijen, Richmond and Yogo (2020b) estimate individual demand functions only for
the largest institutional investors in equity markets, they supplement them with pooled
demand estimates for smaller investors with an insufficient number of portfolio holdings.
In this particular study, the number of cross-sectional observations for individual funds is
more limited for two reasons: (i) bond holdings are summed over individual securities to
form bond buckets informative about the type of risk exposures, and (ii) the investor unit
is much more granular than in asset demand papers using institutional holdings such as
Koijen and Yogo (2019), Koijen, Richmond and Yogo (2020b).30

In addition, modelling the demand of individual investors separately is not desirable when
the objective is to estimate how the return on one bond affects the portfolio allocation
to many others. Intuitively, such estimates are based on the covariance of returns on
one bond with the holdings of all other bonds, conditional on their returns and other
characteristics. This implies using the only available source of variation in returns on
internationally traded bonds – time variation31 – and calls for a panel specification. And
to obtain a broad set of substitution elasticities, the estimation sample needs to also cover
a considerable portion of the cross-section of bonds. At the same time, heterogeneity in
preferences is both likely closer to reality (funds have different mandates and risk profiles)
and helps to recover richer market-wide substitution elasticities, as emphasized by the IO
literature (Berry, 1994, Berry, Levinsohn and Pakes, 1995) and explained in greater detail
in the next subsection.

I strike a balance between the need for granularity in investor preferences and the esti-
mation benefits from a broader, longer panel of bonds. I estimate the demand equation
using the full time period with observed holdings – 2007:Q1–2020:Q4 – but separately
for eight types of funds. As discussed in Section 2, I split funds by the currency area
of their domicile (US or euro area), depending on whether they invest in a single asset
class (fixed income funds) or in both bonds and equity (balanced funds) and into active
or passive funds according to their bond portfolio’s Active Share. This corresponds to
estimating the demand of eight separate panel demand models: for US active and passive
bond funds, for EA active and passive bond funds, for US active and passive balanced
funds, and for EA active and passive balanced funds.32

Expanding on the general demand specification in (7) by plugging in the specific bond
characteristics given by (10) delivers a demand specification that can be estimated on this

30The latter consideration is at the same time a key advantage of using the Morningstar holdings
dataset, where security holdings are observed for the individual funds rather than for the holding company
which may manage hundreds of funds. Greater granularity of holdings allows to take funds’ mandates
and constraints into account when estimating their bond preferences, e.g. by splitting funds by type,
controlling for aspects of their mandate with bi(n), and allowing for fund-specific variation in aggregate
bond market exposure by including fund-time fixed effects ζi,t.

31If bond purchase prices vary across investors – for instance, because they buy at different dates
within the same quarter or have access to different brokers – there may be some variation in returns on
the same bond across different investors. Such sources of return variation can only be explored in detailed
transactional data rather than in the portfolio holdings data used in this project.

32In robustness checks reported in Appendix C, I compare my main results to a split of funds by size
instead of active share.
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data:

wi,t(n)

wi,t(0)
= exp

{
αT (i)per

h
χ(i),t(n) + x1

t (n)
′β1
T (i) + x2(n)′β2

T (i) + bi(n)
′θT (i) + ζi,t + εi,t(n)

}
(11)

where the coefficients on characteristics (αT (i), β
1
T (i), β

2
T (i), θT (i)) are specific to the fund

type T to which fund i belongs, whereas fund-time fixed effects ζi,t and residual demand
disturbances εi,t(n) are specific to investor i.

Finally, I turn to the choice of fund investment universe |Ni,t| which determines the bonds
that enter the portfolio weights vector wi,t. Clearly, the holdings reported by each fund
for a given quarter are part of their investment universe. The question is whether zero
holdings should be added for bonds that are not held in a given quarter but could have
been.33 Appendix Table A.12 shows that aggregated to bucket level, funds’ bond universe
is very persistent with over 90% of current holdings remaining in an investor’s portfolio
from one quarter to the other. Thus, for the demand estimation I take a fund’s current-
quarter holdings as its investment universe and do not include any zero positions.34 This
means that I can take the logarithm of equation (11), which only takes positive values,
and re-write the estimation equation as a fund-type-level panel Logit model:

log
(wi,t(n)
wi,t(0)

)
= αT (i)per

h
χ(i),t(n) + x1

t (n)
′β1
T (i) + x2(n)′β2

T (i) + bi(n)
′θT (i) + ζi,t + εi,t(n)

(12)

which can be estimated by linear methods such as OLS or two-stage least squares. This
relatively simple estimation equation delivers the key ingredients underpinning flexible
substitution or cross-elasticities: (i) heterogeneity in investor preferences for all bond
characteristics; (ii) categorical control variables in x̂i,t(n) that capture most plausible
segments of international bond markets (country, currency, issuer type, credit risk, ma-
turity) such that the estimated degree of substitutability can vary flexibly along all these
dimensions; and (iii) a broad and long sample of granular bond buckets in each fund type
panel regression – providing enough data to estimate substitution patters between a large
number of bonds. The next subsection discussed the functional form of the associated
substitution elasticities and how they compare to those implied by existing asset demand
literature.

33In the Morningstar holdings data, few funds directly report zero holdings at the individual bond
level, and once I sum the bond holdings to bucket level, the observations with zero holdings disappear.
So this information cannot be directly taken from portfolio reports.

34Koijen and Yogo (2019) define the investment universe as the set of stocks a given investor has held in
the current or preceding 11 quarters and emphasize that omitting these zero holdings can bias results for
small investors. However, the panel set-up here mitigates this bias since estimates are disproportionately
influenced by large funds with many bond positions.
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3.3 Demand elasticities

From equation (11) fund i’s demand for a given bond bucket n is given by the following
portfolio weight:

wi,t(n) =
δi,t(n)

1 +
∑Ni,t

m=1 δi,t(m)

=
exp

{
αT (i)per

h
χ(i),t(n) + x1

t (n)
′β1
T (i) + x2(n)′β2

T (i) + bi(n)
′θT (i) + ζi,t + εi,t(n)

}
1 +

∑Ni,t

m=1 exp
{
αT (i)perhχ(i),t(m) + x1

t (m)′β1
T (i) + x2(n)′β2

T (i) + bi(m)′θT (i) + ζi,t + εi,t(m)
}

(13)

where δi,t(n) ≡ wi,t(n)

wi,t(0)
.

I focus on the following definition of demand elasticity that can be analytically derived
from this logistic portfolio weight function by taking the partial derivative of (13) with
respect to the predicted excess return on any given bond k, perχ(i),t(k)

35:

ηi,t(jk) ≡
∂ log(wi,t(j)) ∗ 100

∂perχ(i),t(k)
=

{
αT (i) (1− wi,t(j)) ∗ 100 if j = k,

−αT (i) wi,t(k) ∗ 100 otherwise.
(14)

which describes the percent change in the weight of bond j in investor i’s portfolio in
response to 1 percentage point change in the predicted excess return on bond k.36 This
elasticity with respect to returns is particularly relevant to understanding the degree of
segmentation in international bond markets among safe and risky assets, as it highlights
the degree to which investment funds step in to arbitrage away dispersion in bond returns.
For other questions, such as the optimal issuance of new bonds, researchers might prefer
to study the elasticity of demand to other bond characteristics such as maturity, credit
risk or currency of denomination and the demand model here is flexible enough for these
alternative applications.

The first case in (14) of j = k describes the response of portfolio weight of a bond to
fluctuations in its own return, which I refer to as own elasticity. The parameter αT (i)
determines if the bond demand curve of investor i is flat (αT (i) = 0), downward-sloping
in prices (αT (i) > 0, since bond yields and returns are negatively related to prices) or
potentially upward-sloping (αT (i) < 0). Estimating this parameter with equation (12) for
different types of funds is the focus of the empirical exercise and is discussed in detail
in the next section. The logistic demand specification in (13) calls for this parameter
to be scaled by 1 − wi,t(j) or the share of investor i’s portfolio not allocated to bond
j. Mechanically, this reflects the underlying logistic functional form whose slope changes
with the value of wi,t(j). Intuitively, if a fund allocates a very high portfolio weight to

35An elasticity definition directly applied from Koijen and Yogo (2019) as the percent change in quan-

tity held per percent change in price (− log(Qi,t(n))
log(Pt(n))

) requires additional assumptions on the relationship

between predicted excess bond returns and bond price, which I spell out in Appendix B along with the
relationship between these different elasticity definitions.

36Given that returns are expressed in percentage points, this semi-elasticity of demand is easier to
compare across bonds with different yield levels than a demand elasticity with respect to percent changes
in returns. In addition, a percentage point higher interest rate cost can be related directly to the overall
debt servicing cost of the borrower.
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bond j, it either chooses from a limited investment universe or perceives other bonds as
very imperfect substitutes for bond j – implying it has less elastic demand for that bond.

To gain further intuition about this definition of own elasticity, I consider three extreme
hypothetical cases. First, suppose an investor follows simple allocation rules in terms of
% of portfolio in particular bond buckets. Since he aims to keep his portfolio weights
constant, by the definition in (14) this investor’s elasticity would be zero. Alternatively,
suppose we observe an index fund that simply holds bonds in proportion to their market
value, i.e. has inelastic demand in the sense of −∂ log(Qi,t(j))

∂ log(Pi,t(j))
= 0. The elasticity measure

given by (14) would also be close to zero but with a negative sign.37 At the other ex-
treme, an unconstrained representative-agent CAPM model would imply a nearly-infinite
demand elasticity (see calibration in Petajisto, 2009).

I next turn to the second case in (14) of j ̸= k, which describes the response of other bonds’
portfolio weights when bond j’s return changes – the cross or substitution elasticities.
These too depend on the crucial return sensitivity parameter αT (i), as only funds that
adjust their portfolio share of j in response to a change in bond j’s own return, will need
to adjust all the other weights in their portfolio. In addition, cross-elasticities depend
on the portfolio weight of the bond whose return changes (wi,t(k)), as greater exposure
implies greater need for rebalancing. The cross-elasticity has the opposite sign to the own
elasticity, as the sum of all changes to portfolio weights should sum to 0 such that the sum
of portfolio weights (including that of the ouside asset) remains equal to 1. If demand
is downward-sloping (αT (i) > 0), all other bonds are substitutes for investor i and their
cross-elasticity is negative. And vice versa, for bonds to be complements, investor i would
need to have an upward-sloping bond demand curve (αT (i) < 0).

Note that, at the individual fund level, substitution elasticities from a fixed bond k are
homogenous across bonds. This follows from expressing individual fund demand as a
logistic function of predicted excess returns and other bond characteristics (equation 11).
Hence, there is no meaningful variation in individual fund substitution elasticities. The
specification used in this paper, however, delivers flexible substitution elasticities once
aggregated to the fund sector – which I turn to next.

To describe the demand of the entire fund industry in my dataset, I define the fund
sector aggregate demand elasticity as the percent change in the weight of bond j in the
aggregate fund sector portfolio in response to a 1 percentage point change in bond k’s
predicted excess return. This can be derived from funds’ individual elasticities weighted

37The exact magnitude depends on the bond maturity as shown in Appendix equation B.24. In par-

ticular, ηi,t(jj) = (−∂ log(Qi,t(j))
∂ log(Pi,t(j))

− 1)× matt(j)

Âh
i

= (−1)× matt(j)

Âh
i

, where Âh
i is the estimated relationship

between bond excess returns and yields given by (9) and matt(j) is the remaining years until maturity

of bond j. For a 10-year bond and an estimated Âh
i of around 2.3, the elasticity would be around minus

4%, so negative but also very close to zero.
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by the footprint of each fund in the overall fund holdings of a given bond j38:

ηt(jk) ≡
∂ log(wt(j)) ∗ 100

∂pert(k)
=

{∑
i

AUMi,twi,t(j)∑
i(AUMi,twi,t(j))

αT (i) (1− wi,t(j)) ∗ 100 if j = k,

−
∑

i
AUMi,twi,t(j)∑
i(AUMi,twi,t(j))

αT (i) wi,t(k) ∗ 100 otherwise.

(15)

where wt(j) =
∑

i AUMi,t wi,t(j)∑
i AUMi,t

is the share of bond j in the total assets under management

(
∑

iAUMi,t) of all investment funds in my dataset (US and EA fixed income and balanced
funds). These aggregated elasticities form the basis of my empirical results, where I
describe the variation in own and cross-elasticities by different bond characteristics as well
as over time. There are three interacted sources of variation in (15): (i) the composition
of investors holding bond j; (ii) investor sensitivities to bond returns αT (i); and (iii) the
portfolio allocation of different investors (either to bond j in the own elasticity or to
the remaining bonds k in the cross-elasticity expression). Since the portfolio weights on
individual bond buckets are relatively small (as discussed in section 2), the variation in
elasticities would also be small in the absence of heterogeneity in αT (i) across investors.
Thus, compositional effects are a key driver of variation in fund sector elasticities across
different bonds and over time.

Substitution or cross-elasticities have so far received relatively little attention in the asset
demand literature due to a primary focus on the slope of demand curves.39 While indi-
vidual fund substitution elasticities here are homogenous with respect to a given bond k’s
return, the fund sector aggregate substitution elasticities (equation 15) can vary flexibly
across all bonds j ̸= k.40 In effect, variation in substitutability comes from covariances be-
tween the estimated return sensitivities αT (i) and the distribution of bond holdings across
investors. Put differently, the closest substitutes are those which are held simultaneously
and in larger quantities by the funds with the highest return sensitivities.

3.4 Identification

The empirical specification in equation (12) overcomes the dimensionality challenge posed
by estimating a demand system over a large number of bonds by modelling the demand
for each bond as a function of a parsimonious set of characteristics. However, a second
identification challenge needs to be tackled before taking the model to the data – endo-
geneity of bond returns is likely to bias estimates of αT (i) downwards. A positive demand
shock for a given bond relative to other bonds in investors’ portfolios could both increase
bond holdings by funds in the dataset and raise bond prices (lower returns). Note that
all demand shocks that affects all bond holdings of a given investor (or of multiple funds)
are already captured by the fund-time fixed effects ζi,t, so the only potential bias could

38See Appendix B for derivation.
39An important exception is Chaudhary et al. (2022) who flag that the prices of bonds with close sub-

stitutes are less affected by arguably exogenous demand shocks. They do not, however, directly estimate
substitution elasticities between pairs of bonds and instead assume that the only relevant substitutes to
a given corporate bond are other corporate bonds with the same rating.

40As discussed in the previous subsections, including fixed effects for all potential dimensions of bond
market segmentation (issuer country and type, currency, rating, maturity) in the bond characteristics
vector x̂i,t(n) and allowing for heterogeneity in investor preferences for these is a more general approach
to capture market segmentation than nested Logit demand (as used in Koijen and Yogo, 2020, Jiang et
al., 2021b, Koijen et al., 2020b). See McFadden (1978), Cardell (1997), Berry (1994) for derivations.
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come from relative demand shocks within a given investor’s portfolio. This section tackles
the threat of correlation between the unobserved investor-specific relative demand shock
and predicted excess bond returns which may arise either due to omitted variable bias or
reverse causality:

Et

[
εi,t(n) per

h
χ(i),t(n)

∣∣∣ x1
t (n), x

2(n), bi(n), ζi,t

]
̸= 0 (16)

To address this identification challenge, I need an instrument that is exogenous to fund
demand shocks (controlling for all bond characteristics) but strongly affects bonds’ pre-
dicted returns. Previous asset demand literature (Koijen and Yogo, 2019, 2020, Gabaix
and Koijen, 2022) relies on idiosyncratic shocks to the demand of investors other than
i, which jointly with the market clearing condition for each asset in the demand sys-
tem identifies variation in asset prices that is arguably orthogonal to investor i’s demand
shocks εi,t(n). In contrast, I model only the bond demand of investment funds, who as
described in section 2 hold only part of the bonds’ outstanding value. I thus develop an
alternative identification strategy that can identify exogenous variation in the returns on
a wide range of international bonds – both cross-sectionally and over time.

A highly relevant source of variation in bond market prices comes from surprises to in-
vestors’ expectations of monetary policy.41 High-frequency measures of monetary policy
shocks derived from changes in interest rates in a short intraday window around mone-
tary policy announcements have been shown to materially affect domestic financial market
and real economic conditions (Gürkaynak, Sack and Swanson, 2005, Gertler and Karadi,
2015). And monetary policy, especially since the global financial crisis of 2008-9, acts
along the entire yield curve by informing investor expectations about future monetary
policy as well as by affecting risk premia though extensive asset purchase programmes
(Swanson, 2021, Altavilla, Brugnolini, Gürkaynak, Motto and Ragusa, 2019). Moreover,
monetary policy shocks influence financial conditions across borders as documented by
e.g. Miranda-Agrippino and Rey (2020b) for the Fed and by Miranda-Agrippino and
Nenova (2022) for both the Fed and ECB. And the international spillovers of monetary
policies are heterogeneous depending on the segment of the domestic yield curve affected
(Miranda-Agrippino and Rey, 2020a, Miranda-Agrippino and Nenova, 2022). Another
practical benefit is that monetary policy announcements are made by the major central
banks around once a month (both following planned and exceptional meetings) and can
thus be used to extract monthly exogenous variation in bond returns.

These findings make the monetary policy shocks extracted from both Fed and ECB an-
nouncements good candidates for instrumenting the bond returns of the broad set of
internationally-traded government and corporate bonds observed in my fund holdings
dataset. I construct two monetary policy shocks for each bond bucket held by investment
funds – one Fed, one ECB shock. Raw high-frequency surprises for the two central banks
come from two publicly available datasets: Gürkaynak et al. (2022) for the Fed (which
updates Gürkaynak et al. (2005) until June 2019) and the continuously updated dataset

41Monetary policy shocks are relevant instruments since they can shift the risk-free yield curve – a
starting point for pricing all risky bonds. They also affect the borrowing costs and risk-taking behaviour
of leveraged intermediaries such as global banks (Coimbra and Rey, 2023) and, through market clearing,
the risk premia of the risky assets these intermediaries invest in.
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of Altavilla et al. (2019) for the ECB. Both datasets contain the intraday changes in do-
mestic interest rates of different maturities as well as in a few other assets such as equity
indices and exchange rates around policy announcements. For each central bank I use the
first principal component of surprises to domestic short-term interest rates, as well as to
2-, 5- and 10-year government bond yields.42 The raw announcement surprises contain
information both regarding monetary policy and the economic outlook (Nakamura and
Steinsson, 2018, Miranda-Agrippino and Ricco, 2021, Jarociński and Karadi, 2018). To
make the interpretation of instruments more straightforward, I clean the monetary policy
shocks from central bank information components following the ”poor man’s” approach
of Jarociński and Karadi (2018) applied to each interest rate maturity as in Miranda-
Agrippino and Nenova (2022)43. In total, that procedure yields 17 shocks: Fed shocks to
US interest rates of 4 different maturities; one ECB shock to short euro OIS rates; and
twelve ECB shocks to longer-term euro area sovereign yield curves (four governments,
each with three interest rate maturities). I take one final step to match these 17 shocks
to the bond buckets in the fund demand dataset. While Fed and ECB shocks are of four
discrete maturities, I observe bonds along a continuum of residual maturities between less
than a month to 100 years. For shocks emanating from each central bank in turn, I inter-
polate between the two monetary policy shocks with closest maturities to approximate a
shock of maturity equal to each bond bucket’s weighted average maturity.44

This procedure results in two instruments for each bond bucket n (one for Fed shocks
denoted by FEDivt(n) and one for ECB shocks – ECBivt(n)) which vary over time as
well as across bond maturity:

Zt(n) = [FEDivt(n), ECBivt(n)]
′

Within the euro area, the instruments also vary by bond issuer country thanks to the
data availability of high-frequency surprises to the yield curves of Germany, France, Italy
and Spain (Altavilla et al., 2019). It is worth noting that the instrumented bond returns
perhi,t(n) do not vary by the investor who holds the bond within the fund-type-specific
panel demand regression specified in (12).45 Therefore, to avoid including multiple ob-

42For the Fed, the relevant futures contracts with maturity of up to a year are MP1, MP2, ED2, ED3,
ED4; while for longer maturities I use surprises to on-the-run Treasury yields. For the ECB, the short-run
surprises are those to the EONIA OIS curve. Altavilla et al. (2019) provide surprises to the government
yield curves of the largest euro area sovereign issuers: Germany, France, Italy and Spain, so I use each of
these curves for instrumenting the domestic bonds of each of these countries. For all other bond-issuing
countries in my dataset, I take the surprise to the German yield curve as the relevant instrument.

43Under this procedure, each interest rate surprise is used as a monetary policy shock only if it was
accompanied by an intraday change in the respective equity index (S&P 500 for the Fed, Eurostoxx 50
for the ECB) of the opposite sign. Otherwise the surprise was not a monetary policy shock and the
instrument value is set to zero.

44To be precise, if a given German bond bucket (corporate or government) has a maturity of 3.5 years,
I construct a single ECB monetary policy instrument for it by linearly interpolating between the shock
to the 2-year and 5-year German government yields. For the same bond, I construct a Fed monetary
policy shock of 3.5-year maturity by interpolating between the shocks to the 2- and 5-year Treasury bond
yields. If the bucket instead contains Italian bonds again with weighted average maturity of 3.5 years,
I interpolate between the ECB shocks to the 2- and 5-year Italian government yields to obtain a single
ECB monetary policy instrument; the Fed monetary policy instrument is the same as for the German
bonds bucket.

45The endogenous predicted excess return perhi,t(n) only varies across investors if they are domiciled
in different currency areas and, thus, choose bond allocation based on expected returns in different
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servations with identical endogenous and instrumental variables in the identification and
overstating the strength of instruments, I estimate the demand system in two stages. The
first stage is estimated on unique bond return observations within a month – separately
for bond returns converted into US dollars and into euros. While the second stage re-
gresses all bond holdings of a given fund type on the fitted returns from the first stage,
at quarterly frequency.

To allow for heterogeneous spillovers across bonds from the monetary policies of each of
the two major central banks, I estimate separate first-stage regressions by unique country-
currency pair (indexed by cx) for all pairs with at least 1,000 bucket-month observations:

perhχ(i),t(n) = a
Fed
χ(i),cx FEDivt(n) + a

ECB
χ(i),cx ECBivt(n)

+ bχ(i),cx xt(n) + cχ(i),cx Riskt + dχ(i),t(n) (17)

Bond return sensitivities to Fed aFedχ(i),cx and ECB shocks aECBχ(i),cx are specific to bonds issued
by entities in country c and denominated in currency x. All coefficients are also specific
to the currency in which bond returns are calculated (indexed by χ(i) ∈ {$,e}), since
each currency-pair panel regression (17) is estimated twice – once with predicted returns
in terms of US dollars and once with returns in euros.

The first stage regression also controls for the demand system bond characteristics that
are unique to each bond in xt(n) – this combines the vectors x1

t (n) and x2(n) with
bond maturity, face value, credit rating, seniority plus a corporate dummy that is the
bond-level equivalent of the corporate fund-bond binary variables in bχ(i)(n) of the main
demand specification in (B.17). The investor-bond interactions bχ(i)(n) in the demand
specification (12) become redundant, as only unique bond return observations are used
in the first stage. The second-stage estimation equation in (12) also controls for an
investor-time fixed effect ζi,t to capture investor-specific shifts in preferences for bonds
overall. At the bond level of the first-stage regression, the closest feasible equivalent
would be to control for aggregate market risk aversion which should affect the relative
allocation between bonds and other asset classes such as equity.46 The baseline first-stage
specification in (17) controls for the most commonly used proxy of aggregate risk – the VIX
index of option-implied US equity market volatility. Robustness checks using only the risk
aversion component of market risk, as proposed by either Bekaert, Hoerova and Lo Duca
(2013) (BHL) or Bekaert, Engstrom and Xu (2022) (BEX ), result in similar estimates.
Similarly, using risk aversion proxies specific to bond markets such as the US excess bond
premium (EBP) by Gilchrist and Zakraǰsek (2012) or the euro area Composite Indicator
of Systemic Stress bond market subindex (CISSEAbond) by Holló, Kremer and Lo Duca
(2012).

Exogeneity of instruments: The key identifying assumption here is that the hetero-
geneous effects of monetary policy shocks across bond country, currency and maturity
are orthogonal to the unobserved fund demand shocks εi,t(n). Note that this is condi-

currencies. As I estimate panel demand by fund types which are defined over funds in the same domicile,
multiple holdings of the same bond n within a quarter t are always characterized by the same perhi,t(n).

46A direct application of control variables from the second stage would imply including a time fixed
effect in the first stage regression (17). This approach, however, absorbs all time variation in the monetary
policy instruments.
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tional on all other control variables in the vector x̂i,t(n) which includes both bond-specific
characteristics and time-varying aggregate investor risk aversion proxies. The first stage
estimation approach can be thought of as a parsimonious approximation to including
the entire yield curve of monetary policy shocks

∫ 100

τ=0
Zt(τ)dτ (with Zt(τ) denoting the

2-dimensional vector of the time-t Fed and ECB monetary policy shocks at maturity τ),
interacted with a dummy variable that equals one when the maturity of bond n is equal
to the maturity of the shock 1mat(n)=τ as well as country-currency fixed effects 1n∈|cx|:

Et

[
εi,t(n)

(∫ 100

τ=0

Zt(τ)dτ × 1mat(n)=τ × 1n∈|cx|

) ∣∣∣∣ x1
t (n), x

2(n), bi(n), ζi,t

]
= 0 (18)

The instruments Zt(τ) vary only across bonds and time but not across investors, so that
by construction there can be no correlation between the monetary policy instruments and
εi,t(n) variation across funds (i.e. along dimension i). Thus, identification comes from
heterogeneous monetary policy spillovers in the cross-section of bonds.

A growing body of evidence suggests that monetary policy decisions by the Fed in par-
ticular but also by the ECB (Bauer et al., 2023, Miranda-Agrippino and Rey, 2020b,
Miranda-Agrippino and Nenova, 2022) can affect aggregate risk appetite. To the extent
this prompts investors to rebalance between broad asset classes such as equity and bonds,
in the demand system its effects would be captured in the investor-time fixed effect ζi,t
and would not enter the unobserved demand shocks εi,t(n). Similarly, in the first stage
regression aggregate investor risk aversion is controlled for via widely-used proxies such
as the VIX, Bekaert, Hoerova and Lo Duca (2013) or Bekaert, Engstrom and Xu (2022)
risk aversion indices, or bond market risk premia (Gilchrist and Zakraǰsek, 2012, Holló
et al., 2012). Thus, for the identifying assumption to hold, only fund demand shock dis-
persion away from the aggregate time variation in risk premia and within funds’ bond
portfolio (rather than between bonds and other assets) need to be uncorrelated with the
high-frequency shocks to yield curves around Fed and ECB announcements. This is a
much weaker and more realistic assumption than claiming that fund demand shocks and
monetary policy shocks are uncorrelated – monetary policy may well be (causally or en-
dogenously) correlated with aggregate fluctuations in investor risk appetite as well as with
cross-asset-class portfolio rebalancing47.

Moreover, the stark difference in frequencies between instruments and unobserved de-
mand shocks – with the former based on intraday price fluctuations on monetary policy
announcement days and the latter reflecting quarter-end portfolio positions – implies the
two are based on different underlying information sets. Moreover, high-frequency shocks
isolate only the component of monetary policy that is unexpected by market participants,
whereas asset manager expectations about asset returns are likely to incorporate a broader
set of information, including the stance of monetary policy (expected and unexpected),
macroeconomic and political conditions.

Finally, the construction of monetary policy instruments for different bonds solely from
euro and dollar short-term money market interest rates and the yield curves of five gov-

47See Lu and Wu (2023) for evidence of fund-driven reallocation across asset classes in response to
monetary policy shocks.
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ernment issuers is well-suited to satisfy the identifying assumption. To see this, suppose
monetary policy shocks do trigger an increase in risk appetite that causes mutual funds
to rebalance their portfolios towards risky bonds and away from safer bonds. The pro-
posed instrument is not be correlated with such a reallocation since by construction it
varies only over time, across bond maturity, country and currency but not across credit
risk, bond seniority or liquidity. Indeed, I find that the magnitude of monetary policy
shocks across different bonds are not correlated with their rating or maturity. In addi-
tions, the monetary policy spillover coefficients estimated in the first stage IV regression
(17) – aFedχ(i),cx and aECBχ(i),cx – are also uncorrelated with bond riskiness. When I discuss the
results from the first stage regressions in the next section, I find that the bonds whose
predicted dollar returns react most to Fed shocks are those denominated in dollars or in
currencies to some extent anchored to the dollar48 and not those of the riskiest issuers.
I conclude that the threat to identification from the exogeneity condition in (18) being
violated due to greater spillovers of the monetary policy instruments to risky versus safe
bonds is small.

Strength of instruments: To improve the precision of estimates and utilize the full
time variation in monetary policy shocks, the first stage is estimated on monthly data
since all bond demand system variables other than fund holdings are easily available at
monthly frequency. The sample period is also longer, reflecting the data availability of
monetary policy surprises from January 2002 to June 2019.49

The strength of instruments used in (17) is formally tested in the next section using
effective F-statistics and critical values proposed by Olea and Pflueger (2013). There is
a trade-off between instrument strength and allowing for heterogeneous monetary policy
spillovers. For country-currency pairs where the instruments’ effective F-statistic is below
the critical values or I have less than 1,000 bond-month observations, I pool the panel
estimation by bond issuer country only and add a bond currency fixed effect to the first
stage specification in (17). If the instruments turn out to be insignificant in any of
these panels too, I pool the remaining bond return observations by bond currency and
repeat the estimation this time adding a bond issuer country fixed effect to the first stage
specification in (17). Finally, if any bond panels with low instrument F-stats remain,
they are pooled in a single rest-of-the-world (RoW) panel where I control for both bond
country and currency fixed effects. In all these steps, I retain only bond return fitted
values for the second stage from panel estimates with high F-statistics to reduce any
weak instrument bias in the final demand estimates. The results of these first stage
regressions are summarized in the next section.

Exclusion restriction: Instrument validity requires monetary policy to only affect
fund bond holdings through expected bond returns. Since the demand model controls for
an investor-time fixed effect likely to capture a range of alternative ways through which
monetary policy could affect mutual funds (e.g. through their end-investor wealth and

48As expected, countries who choose to stabilize their currencies vis-a-vis the dollar import US financial
conditions via global bond markets.

49Some of the ECB surprises (e.g. to the German yield curve) are also published for the period 1999-
2001 but not all used here to construct monetary policy instruments. In addition, the ECB Governing
Council switched from bi-monthly to monthly meetings in 2002, so I use only the period when announce-
ments were at relatively stable frequency, consistent with monthly bond returns.
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inflows, general market liquidity, the overall macroeconomic outlook), the identification
strategy seems to adequately meet this requirement.

Finally, all other observable variables in the bond characteristics vector x̂i,t(n) are as-
sumed to be uncorrelated with fund demand shocks εi,t(n). This assumption is strongest
with regards to the bond supply control variable (face value). Governments usually plan
their debt issuance as part of an annual budget such that the amount outstanding at
quarterly frequency is very likely exogenous. Corporations may be more responsive to
market conditions but even they need time to market their debt to investors, so endo-
geneity is unlikely to be a major concern at high frequencies.50 In addition, the face
value of each bond bucket is converted into a common currency for the estimation us-
ing exchange rates lagged by a year again with the objective to maintain the exogenous
supply assumption. Bond fundamentals such as maturity, seniority and credit rating are
also unlikely to respond to investor demand shocks within the same quarter. Turning
to the remaining explanatory variables, a couple (residual maturity and bond seniority
rank) are aggregated to bond bucket level from individual bond characteristics – these are
constructed as weighted averages using face value weights rather than bond market values
to avoid price fluctuations affecting them through changes in bond weights. Hence, the
assumption that bond characteristics other than returns are exogenous seem appropriate
as well.

Estimation procedure To summarize, the estimation of the empirical bond demand
model proceeds in three steps:

1. Obtain predicted excess returns perhχ(i),t(n) across bond buckets as the fitted values

of bond return predictive regressions described by (8);

2. Estimate first-stage instrumental variable regressions of perhχ(i),t(n) on Fed and ECB

monetary policy shocks given by (17);

3. Estimate the panel bond demand model in (12) using two-stage least squares sepa-
rately for each of eight fund types: EA and US bond-only active and passive funds,
EA and US balanced active and passive funds.

Following these steps, I obtain estimates of αT (i) by fund type. These return sensitivities
are then combined with the portfolio weights and holdings data to calculate demand
elasticities of individual funds and of the aggregate fund sector, given by expressions (14)
and (15) respectively. The next section first describes the intermediate results from each
of these three estimation steps. It then calculates and summarizes the magnitude of the
implied demand elasticities.

50To verify the validity of this assumption, I also estimate the demand model with monthly holdings
data to increase the frequency of observations further. The coefficient on bond amount outstanding
remains unchanged.
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4 Estimation results

4.1 Step 1: Predictive bond return regressions

As detailed in the methodology section 3.2, to operationalize the demand system I first
obtain an estimate of funds’ predicted excess bond returns in their home currency. To
that end, I regress realized excess returns at alternative horizons (h = 3, 12 months
ahead) on data as of the base period of returns (time t if return is calculated as the
change between t + h and t). The explanatory variables include bond yield, the first
three principal components from the US and German government yield curves (labelled
below as US & DE Level, Slope and Curvature), the log real exchange rate between the
respective bond’s currency of denomination and fund i’s home currency, as well as bond-
bucket fixed effects. The estimates of regression equation (8) are shown in Tables 2 and
3, with results of predictive regressions for excess returns in dollar terms (rx$,t+h) on the
left-hand side, and results for excess returns in euro terms (rxe,t+h) in the left-hand-side
table.
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Table 2: USD excess returns

(1) (2)
rx$,t+3(n) rx$,t+12(n)

yt(n) 2.314∗∗∗ 1.976∗∗∗

(0.285) (0.082)

rer$,t(n) -0.614∗∗∗ -0.449∗∗∗

(0.068) (0.024)

US Level -0.046∗∗ -0.045∗∗∗

(0.020) (0.006)

US Slope -0.242∗∗∗ -0.136∗∗∗

(0.083) (0.026)

US Curvature 0.436 -0.146
(0.417) (0.137)

DE Level 0.002 0.017∗∗∗

(0.017) (0.005)

DE Slope 0.476∗∗∗ 0.296∗∗∗

(0.128) (0.038)

DE Curvature 0.145 -0.134
(0.603) (0.185)

Obs 405,449 406,279
Adj. Rsq. 0.11 0.39
Within Rsq. 0.09 0.32

Table 3: EUR excess returns

(1) (2)
rxe,t+3(n) rxe,t+12(n)

yt(n) 2.295∗∗∗ 1.898∗∗∗

(0.226) (0.085)

rere,t(n) -0.473∗∗∗ -0.412∗∗∗

(0.054) (0.024)

US Level 0.006 0.008
(0.014) (0.007)

US Slope 0.221∗∗ 0.166∗∗∗

(0.090) (0.032)

US Curvature -0.214 0.348∗∗∗

(0.320) (0.134)

DE Level -0.053∗∗∗ -0.049∗∗∗

(0.011) (0.005)

DE Slope 0.067 0.062∗

(0.092) (0.035)

DE Curvature -0.729 -0.543∗∗∗

(0.448) (0.166)
Obs 405,450 406,279
Adj. Rsq. 0.09 0.37
Within Rsq. 0.07 0.30

Note: Estimation sample from Jan-2002 to Dec-2020, month-end. yt(n) denotes yield to maturity/worst on bond n at the

end of month t; rer$,t(n) is the logarithm of the real exchange rate of bond currency n relative to the US dollar (US dollars

per unit of currency n); rere,t(n) – the logarithm of the real exchange rate of bond currency n relative to the euro (euros

per unit of currency n); US Level, Slope and Curvature correspond to the first three principal components extracted from

the US government bond yield curve; US Level, Slope and Curvature are the first three principal components of the German

government yield curve. All predictive panel regressions also include bond bucket fixed effects. Standard errors clustered

at bond bucket and month level.

First, bond yield-to-maturity51 in month t has a strong predictive power for all bond return
horizons and currencies. The yield importance is somewhat greater at the shorter horizon
of 3 months compared to 12 months ahead but very similar across returns converted into
euros or dollars.

Second, a high log real exchange rate at time t (i.e. an appreciated bond currency vis-à-vis
the dollar or euro) implies lower future bond returns in the investor currency if the bond
currency depreciates back to its slow-moving equilibrium value over the forecast horizon
h. That is indeed the case on average in this panel of bond returns as suggested by the
significant negative coefficients on the log real exchange rate.

Third, the six factors extracted from safe US Treasury and German Bund yield curves
also add power to the regressions. For bond returns converted into US dollars (first two
columns), the level of the US yield curve lowers the excess return of international bonds.
The same holds for the level of the German yield curve with regards to the excess returns
converted into euros. At the longer end, a higher US slope factor also predicts lower USD
bond returns (columns 1 and 2) and a higher German curvature factor is associated with
lower bond returns in euros (columns 3 and 4). These findings are consistent with how safe

51Or, respectively, yield-to-worst for callable/putable bonds.
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yield curves might predict excess returns on risky assets via different mechanisms. Firstly,
the US and German level factors are highly correlated with the respective short-term safe
rates subtracted from bond returns to construct the excess returns on the left-hand-side
of these regressions.52 If safe rates are persistent, their level could be informative about
future safe rates and, in turn, excess returns. Second, higher interest rates could increase
aggregate risk aversion and, perhaps with some delay due to slow portfolio rebalancing,
lower risky asset returns (Stavrakeva and Tang, 2021, Miranda-Agrippino and Rey, 2020a,
Miranda-Agrippino and Nenova, 2022).

On the other hand, the level of foreign yield curves (i.e. not in the currency into which
bond returns are converted) has limited predictability for both dollar and euro returns.
For example, the US level factor is not a strong predictor of euro bond returns. And the
German level factor predicts dollar bond returns only 12-months ahead and with lower
magnitude than the US level factor. Changes further along the foreign government yield
curves, captured by the slope and to a lesser extent by the curvature factor also predict
bond returns. Most significant coefficients on factors extracted from the respective foreign
yield curve have the opposite sign to the domestic yield curve. For instance, a higher Ger-
man yield curve slope is associated with higher dollar returns in the panel of international
bonds. This is consistent with Lustig, Stathopoulos and Verdelhan (2019), who find that
a higher yield curve slope relative to the US predicts higher dollar excess government
bond returns in a panel of advanced economies. They show this result combines two com-
ponents – the higher-slope bonds are, on the one hand, likely to yield a lower currency
excess return (lowering dollar bond returns), but, on the other hand, their local currency
returns are higher and the latter effect dominates. My results confirm their finding in
a panel of corporate and government bonds issued by a wider range of countries and of
diverse maturities and currencies of denomination. In addition, in Table 3 I confirm that
this result holds when bond returns are converted into another major currency. When
the euro is the reference currency, one can think of US bonds as the foreign asset and as
before a higher US slope predicts higher euro returns on foreign bonds.

Overall, the predictive regressions account for around 30% of the variation in 12-month-
ahead bond returns (excluding the contribution from bucket fixed effects) and around 8%
of the variation of the more volatile 3-month bond returns. Given the relatively parsimo-
nious predictive regression and the broad set of international corporate and government
bond returns modelled, this fit is considerable. I save the fitted values from the regres-
sions in Tables 2 and 3 to use as proxies of expected bond returns in the next steps of the
estimation. These fitted values are referred to as predicted excess returns and denoted by
per12χ(i),t(n), per

3
χ(i),t(n), respectively.

4.2 Step 2: First-stage IV regression

With these predictions of excess returns in hand, I proceed to the first-stage regressions
in order to obtain exogenous variation in excess returns. In the main text of the paper I
will focus on results using the predicted excess returns at 3-month horizons and control

52USD excess returns are calculated by subtracting the 12-month or 3-month USD OIS interest rates
from bond returns of the respective horizon. EUR excess returns subtract the respective horizon EUR
OIS rates.
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for time-variation in risk attitudes with the VIX index. Similar results are obtained if I
use 12-month-ahead returns instead. Results are also robust to replacing the VIX index
with alternative measures of aggregate risk aversion. All first-stage results and robustness
checks can be found in Appendix C, Figures C.18 – C.26.

As described in the previous Section, I form panel subsets from the full monthly bond
dataset defined by the country of risk and currency of denomination of bonds. The units
of observation are unique bucket-month data points of which there are over 350,000 in
total for the period Jan 2002 – Jun 2019, covering 5,269 unique buckets. For each unique
country-currency sub-panel, I estimate the specification in (17) and save the results if
the effective F-statistic is at least above the 30% critical value of Olea and Pflueger
(2013). Estimates from these panel regressions are denoted by the ISO 2-letter country
code and 3-letter currency code in the reported results, such that for instance ”JP JPY”
stands for results based on the panel formed from bonds issued by Japanese entities
and denominated in yen. Country-currency panels for which I obtain too low F-stats
are then pooled further into a country panel, denoted by for instance ”JPothfx” for all
remaining bonds by Japanese issuers. Again, the first-stage algorithm only saves those
country panels where instruments are strong and pools the rest of the bonds into currency
panels. Saved currency panels with high F-stats from this step are denoted for example
”JPYrest” for the pooled bonds denominated in yen. The final rest-of-the-world (RoW)
panel is formed by bond sub-panels with either too few observations or too low F-stats
from the finer sub-panels in the previous steps.

The first panel of Appendix Figure C.18 shows the effective F-statistics from all panel
regressions estimated following this algorithm for predicted bond dollar returns per3$,t(n).

The algorithm estimates 76 unique regressions for per3$,t(n) with an F-statistic greater or
equal to the critical value (red diamond). The first stage provides a fitted value for 4,777
out of 5,269 bond buckets (or 99% of the face value of bonds in the dataset), which will
be used in the estimation of bond demand by US funds. The majority of bond panels
with sufficiently high F-stats for the instruments are at the country-currency level but
fitted values from a few more aggregated panels (with labels ending in ”othfx” or ”rest”)
are also saved. The final catch-all ”RoW” panel estimates are not saved due to an F-stat
just below the critical value (see third-to-last bar of the graph).

The second panel of Appendix Figure C.18 shows the F-statistics from a total of 64
regressions ran for per3e,t(n) using the same algorithm. The bonds with sufficiently-high
F-stat account for around 99% of the amount outstanding of bonds (or a total of 4,667
unique buckets) in the dataset for EA funds’ bond demand estimation.

The first stage instrument F-stats presented so far establish that monetary policy shocks
are strong instruments for bond returns. They also have heterogeneous effects on bond
returns depending on the country and currency of the bonds as shown in Figures C.19
and C.20. For the Fed, predicted dollar returns 3 months ahead (panel (a) of Figure C.19)
vary between positive and negative 0.4 percentage points per 1 percentage point shock
to the relevant segment of the US yield curve at time t. As the predictive bond return
regressions made clear, several forces determine international bond returns converted back
into dollars. First, a higher US yield curve may drive up local currency yields across the
globe as countries import US financial conditions either due to a fixed or semi-flexible
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exchange rate regime or through other channels, e.g. global financial intermediaries.
Second, the dollar appreciates after a Fed tightening and this may or may not reverse in
the months following the shock. If the dollar appreciation on impact (at time t) reverses
by the end of the 3-month horizon, foreign currency bonds may have higher returns in
the depreciated dollar. On the other hand, if the dollar appreciation is persistent, foreign
currency bond returns may fall.

How spillovers play out and which channel dominates for a given set of bonds depends
on its fundamentals. For instance, the bonds whose returns increase the most in response
to a Fed tightening (to the left of panel (a) of Figure C.19) are either denominated in
dollars or currencies closely linked to the dollar (like the Hong Kong dollar HKD or
the Chinese yuan CNY) or, interestingly, in Swiss francs (CHF). For dollar and dollar-
pegged currency bonds, the first two international transmission channels dominate – their
bond yields comove with US ones and the lagged dollar depreciation might help drive
up future returns too. On the other hand, the dollar appreciation affects more strongly
bonds denominated in e.g. euros, British pounds, Japanese yen, Canadian and Australian
dollars such that the Fed shock lowers their returns in dollar terms at 3-month horizons.
The effects of Fed monetary policy shocks on bond returns converted into euros (panel (b)
of Figures C.19) resemble those for dollar returns but are somewhat weaker in absolute
terms. Again, dollar, pegged currency and Swiss franc bonds are on the left-hand side
with positive spillovers and other currency bonds are on the right with lower excess returns
after a Fed hike.

Turning to the effects of ECB monetary policy shocks on bond returns (Figure C.20)
flags how different international bond market spillovers from these two central banks are.
Starting with the effects of ECB tightening on returns converted into its own currency,
the euro, in panel (b) of Figure C.20, what is most striking is the smaller magnitude of
bond return impacts and the greater estimation uncertainty around those. This may be
because fewer countries with fixed exchange rate regimes use the euro as their anchor
currency (Ilzetzki, Reinhart and Rogoff, 2019). That would mean euro area financial
conditions are not directly ’exported’ to as many peggers as US interest rates. It is also
certainly true both in the bond dataset analysed here and in overall debt issuance that
fewer international bonds are denominated in euros than in dollars (ECB, 2020). When
the ECB hikes, the euro likely appreciates – if the appreciation persists past the month
of the initial shock, it could reduce the euro return of non-euro-denominated bonds.
Indeed, examining the estimated responses of predicted dollar returns to ECB policy
announcements (panel (a) of Figure C.20), the first thing to note is that responses are
on average greater and more precisely estimated. Intuitively, that fact is especially true
for euro-denominated bonds such as ones issued by Italy and Spain (IT EUR, ES EUR).
This suggests that an important channel of monetary policy spillovers of ECB policy to
international bond markets is through the shift in the euro-dollar exchange rate.

4.3 Step 3: Panel bond demand by fund types

For the last step of the estimation procedure, I report the results from the panel bond
demand regressions in (12) by fund type. The resulting point estimates of α̂T (i) or the
fund sensitivity to bond predicted excess returns are of particular interest. These are
combined with data on fund holdings to construct estimates of funds’ demand elasticities
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according to equation (15). Figure 5 summarizes the estimated α̂T (i) for the baseline fund
types by domicile, asset class and active share rankings.

Figure 5: Estimated coefficients α̂T (i) on instrumented per3χ(i),t by fund type
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active share of each fund (averaged over time). Full regression output reported in Appendix Table C.14.

Starting with the top-left plot of the estimated sensitivities, we see that US fixed income
funds have relatively high estimated sensitivities. Active US bond funds are considerably
more responsive to changes in predicted bond returns than passive ones. For passive funds
the estimated α̂T (i) is around 2, whereas for active it rises to 4. A similar pattern holds for
US balanced funds (top-right panel), albeit with somewhat lower point estimates across
both passive and active funds and somewhat wider confidence bands.

Euro area funds in general are less sensitive to predicted bond return fluctuations – both
within the fixed income and balanced fund types. The bottom-left panel shows that the
sensitivity of active EA fixed income funds is significantly higher than zero but with a
point estimate of just under 2 is only half as high as that of their US counterparts. The
sensitivity of passive EA fixed income funds is only slightly above zero and not to a sta-
tistically significant degree. EA balanced funds, like US balanced funds, are less sensitive
to changes in predicted bond returns compared to their fixed income counterparts in the
same currency area. The structural estimate is consistent with the summary portfolio
allocation statistics discussed in Section 2, which flagged that EA balanced funds have
the highest average allocation to safe and sovereign bonds of all fund types discussed here.

Overall, the patterns revealed by the heterogeneous fund sensitivities to bond returns
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make intuitive sense – active funds react more to return fluctuations than passive ones,
especially for fixed income funds; and funds who invest exclusively in bonds (fixed income)
are more sensitive to their returns than funds who hold multiple asset classes (balanced).
The systematically higher sensitivity to returns of US funds compared to EA funds is
potentially consistent with differences between the fund sector market structure, where
the US industry’s assets under management are more concentrated in fewer large funds
compared to their euro area counterparts. In the next subsection I use the point estimates
of αT (i) for the eight fund types of interest to construct demand elasticities across different
bonds and discuss in detail what the magnitudes of these point estimates imply for the
slope of funds’ demand curves.

The full regression tables with estimated coefficients on the other exogenous bond char-
acteristics can be found in Appendix C, Table C.14. The remaining coefficients are con-
sistent with the discussed estimates of fund sensitivities to bond returns as well as with
the summary statistics on portfolio allocation presented in Section 2. Bond maturity is
not independently an attractive bond feature for investment fund beyond its relation to
higher predicted bond returns (incorporated into the first-stage regressions). Some of the
balanced funds seem to even prefer bonds of shorter maturities perhaps due to liquidity
risk management demands. For all fund domiciles and fund styles by asset class, passive
funds have a strong preference for investment-grade bonds (with a credit rating of BBB-
or higher) and active funds rarely do. Within the investment-grade category, EA funds
place greater weight on top-notch bonds with a rating of AA- or higher, whereas US funds
are just as keen on the lowest investment-grade notches (BBB). All funds prefer bonds
with a higher amount outstanding but within each fund domicile and style, the passive
funds are consistently estimated to place greater weight on the quantity available from
each bond. For instance, the coefficient on amount outstanding is estimated at 0.46 for
US passive fixed income funds (column 2) and 0.33 for their active peers (column 3). The
seniority of bonds is not an important determinant of fund portfolios beyond its associa-
tion with bond returns established in the first-stage regressions (where more senior bonds
are associated with lower returns).

The home bias coefficient can only be estimated within the euro area fund types (although
preferences for any country can be recovered from the country fixed effects) and there
it only appears to significantly bias the holdings of fixed income funds towards home
bonds. Geographical fund mandates are clearly followed in portfolio allocation decisions,
especially for fixed income funds where more of the portfolio holdings are in bonds. A
government bond funds is significantly more likely to gold bonds issued by governments
across the board. Funds that hold a mix of government and corporate bonds also have
a (weaker) preference for government bonds, likely reflecting a higher average portfolio
weight of government bonds in the fund sector as a whole. Only active corporate bond
funds have an additional preference for corporate bonds once all other bond characteristics
are taken into account. All panel regressions include fund-quarter fixed effects as well as
bond currency and issuer country fixed effects, which aid considerably to fit the observed
holdings data with on average 50% of the overall variation in holdings data explained by
these fixed effects (as evident from the differences between the overall R-squared and the
Within R-squared statistics).

Overall, the bond demand model fits the portfolio allocation by funds in the sample
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very well. The overall R-squared is at least 80% for most fund types, ranging between
71% for active US fixed income funds and 94% for EA passive fixed income funds. The
bond demand model describes particularly well the portfolio allocation by passive fixed
income funds, where it likely benefits from a large portfolio portion being observable as
well as from mandates being well-described by the broad categorical bond characteristics.
The Appendix reports results for alternative fund type splits, definitions of the endoge-
nous bond return variable (predicted excess bond returns 12 months ahead) and different
choices of the aggregate risk aversion control in the first stage. These all confirm that the
baseline results provide robust foundations for the description of fund demand elasticities.

4.4 Estimated demand elasticities

I proceed to calculate the elasticities implied by the bond demand model and estimated
sensitivities of funds to predicted excess returns α̂T (i) from the last subsection. Here,
I summarize broad patterns of demand elasticities across all bonds and fund types and
compare magnitudes to existing literature. In the next section, I explore how the demand
elasticities vary across safe versus risky bonds as well as how safe bond elasticities (own
demand elasticities as well as substitution elasticities) change over time.

Own elasticities Own demand elasticities of the fund sector – i.e. the percent change
in portfolio weight of a given bond in response to a 1 percentage point change in own
predicted excess return – are a natural starting point for examining the estimated elastic-
ities. Own elasticities have been the focus of much of the recent literature on downward
sloping asset demand, providing a useful benchmark for my results. Here, I summarize
results for bond-specific elasticities aggregated to the fund sector level. Table 4 provides
an overview of the distribution of own demand elasticities ηt(jj) across different bond
buckets j over the sample period t = {2007Q1, . . . , 2020Q4}53:

Table 4: Summary statistics for own bond elasticities of aggregate fund sector ηt(jj)

Fund Type Mean S.D. Median 1st %ile 99th %ile Obs.
US fixed income 311.98 64.17 333.16 204.31 380.98 75,938
EA fixed income 133.66 32.07 144.21 54.51 165.43 105,945
US balanced 199.82 52.51 218.25 120.07 253.15 43,041
EA balanced 78.54 20.62 67.62 64.23 143.66 77,109
Total Fund Sector 180.40 75.41 164.84 55.01 378.96 110,529

Note: Elasticities ηt(jj) aggregated for the entire fund sector or by four broad fund types. Each summary statistic is

calculated across two dimensions: bonds (j) and quarters with holdings data (t).

On average, the fund sector changes the portfolio weight of a bond by 180% in response
to a 1 percentage point change in its predicted excess return. This number can easily
be related back to the estimates of fund return sensitivities αT (i) shown in Figure 5 of
the previous subsection. Suppose a single fund i’s estimated αT (i) is 2 and its bond
portfolio weight of a given bond j is 1%54, then its elasticity by this measure would equal
2× (1− 0.01)× 100 = 198. The main source of variation in the own elasticity comes from

53As shown in (15), these are holdings-weighted averages of the fund-specific demand elasticities. And
a summary of the underlying individual own demand elasticities can be found in Appendix Table C.15.

541% portfolio weight corresponds to the 75th percentile of observed bond weights wi,t(j) in the dataset.
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the estimated heterogeneous sensitivities αT (i), since funds are diversified and wi,t(j) are
small such that the (1 − wi,t(j)) component of the elasticity formula (14) is close to 1.
This is evident if one compares the elasticities aggregated at the level of four broad fund
types (rows 1-4 of Table 4). The funds with highest estimated αT (i) as shown in Figure 5
are US fixed income funds and their average elasticity is above 300%. At the other end
of the spectrum, the low-sensitivity EA balanced funds have the lowest elasticities – on
average, 79%.

Consistent with existing literature on demand elasticities55, my estimates confirm a downward-
sloping demand curve in prices. They suggest that investment funds on average have
fairly elastic demand for international bonds but are still far less elastic than implied by
workhorse finance models of portfolio allocation (with elasticities of approx. 20,000, ac-
cording to Petajisto, 2009). There is no directly comparable work modelling demand for
international bonds issued by both corporates and sovereigns at this level of granularity
both at the holdings side (bond buckets defined by country, currency, issuer type, rating
and maturity segments) and at the investor side (individual mutual funds). Studies based
on investor bond holdings aggregated at country level or broad country-sector level report
demand elasticities with respect to prices. To make like-for-like comparisons with these
studies, in Table 5, I use the relationship between my baseline elasticity definition in (14)
and the elasticity of demand with respect to prices derived in equation (B.24) of Appendix
B.3:

Table 5: Summary statistics for own bond elasticities of aggregate fund sector, w.r.t.
price: −∂ log(Qt(j))

∂ log(Pt(j))

Fund Type Mean S.D. Median 1st %ile 99th %ile Obs.
US fixed income 355.15 530.78 152.88 23.56 1,915.53 75,938
EA fixed income 170.77 232.70 77.25 9.12 826.25 105,945
US balanced 179.44 286.97 81.22 13.37 1,194.77 43,041
EA balanced 91.96 129.13 46.20 7.07 603.31 77,109
Total Fund Sector 230.11 357.15 91.80 11.90 1,571.52 110,529

Note: Elasticities − ∂ log(Qt(j))
∂ log(Pt(j)

aggregated for the entire fund sector or by four broad fund types. Each summary statistic

is calculated across two dimensions: bonds (j) and quarters with holdings data (t).

This conversion simply scales each elasticity by the relationship between bond returns and
prices (dividing by bond maturity and multiplying by the effect of bond yield on returns).
By this definition, mean elasticities are higher than the baseline (as for very short-term
bonds the elasticity with respect to prices divides by their maturity of less than 1 year),
while the median elasticity is lower across the sample of bonds here. A median elasticity
of around 90 is higher than most existing elasticities estimated for long-term debt from
aggregate country-level data (both at the investor and asset side). Consistent with this
literature’s estimates, elasticities for short-term debt are calculated to be higher than for
long-term debt. For instance, Koijen and Yogo (2020) estimate an elasticity of 4.2 for
long-term debt and of 42 for short-term debt based on aggregate international portfolio

55This includes both a long string of papers documenting a persistent price effect of stock index addi-
tions and exclusions (e.g. Shleifer, 1986, Chang, Hong and Liskovich, 2015, Pavlova and Sikorskaya, 2022,
among many others), as well as more recent attempts to estimate demand systems for financial assets
following the methodology of Koijen and Yogo (2019).
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investment. Using a similar estimation methodology and aggregated holdings data, Jiang,
Richmond and Zhang (2021b) report an elasticity of 229 for short- and 2 for long-term
debt. Koijen, Koulischer, Nguyen and Yogo (2020a) estimate a total market elasticity of
3.21 for the aggregated debt of euro area sovereigns56, with significant variation by the
holder sector. Their results suggest that mutual-fund-specific demand elasticity faced by
euro area sovereigns is on average 2.93. Consistent with my finding that US funds have
more elastic demand, Koijen, Koulischer, Nguyen and Yogo (2020a) estimate that foreign
investors in euro area sovereign debt have a much higher demand elasticity (7.19) than any
euro area investors. Similarly, estimating demand based on the aggregated international
government debt holdings of six broad investor sectors (domestic and foreign banks, non-
banks and official sectors) (Fang, Hardy and Lewis, 2022) find private non-banks (which
include mutual funds as well as insurers, pension funds, hedge funds, households and
other non-bank financial companies) are the most elastic ones – with an elasticity of 1.5
for domestic and 3.5 for foreign investors.

Broadly, the more granular elasticities estimated in this paper are higher than those from
previous literature based on country-level debt holdings. This might reflect a general
tendency of demand elasticities to decrease as the definition of an asset becomes more
aggregated. In essence, the broader the asset definition, the harder it would be for an
investor to find a suitable substitute and, hence, the lower the demand elasticity. In a
finance application to US corporate bonds, this feature is nicely illustrated by Chaudhary,
Fu and Li (2022) but it is commonly observed across industrial organisation and inter-
national trade studies at different levels of product aggregation (Goldberg and Pavcnik,
2016, Fontagné et al., 2022, Boehm et al., 2023).

More specifically to bond demand elasticities, meaningful comparisons between granular
elasticity estimates from different studies or even between bonds of different maturities
within the same study are severely impaired when the elasticity is defined in terms of
bond prices as in equation (B.24) and shown in 5. To make this clear, suppose I observe
a 6-month bond and a 10-year bond. Again, let’s take an investor with estimated return
sensitivity of αT (i) = 2 and bond portfolio weights of 1% for each of the two bonds. Now
recall that the estimated effect of bond yields on predicted excess returns Ahχ(i) was 2.3

(see e.g. Table 2). The same investor’s elasticity with respect to the price of the bond with
six months (or 0.5 years) until maturity will be 2× (1− 0.01)× 100× 2.3/0.5 + 1 = 912,
while his elasticity with respect to the price of the bond with 10 years until maturity will
be 2 × (1 − 0.01) × 100 × 2.3/10 + 1 = 46.5. To see how much dispersion in elasticities
across bonds the maturity generates, compare the standard deviations of bond elasticities
of the total funds sector (bottom row) under the baseline elasticity definition reported in
Table 4 to the standard deviation of the elasticity with respect to bond prices in Table
5. Maturity entering this calculation increases the standard deviation five-fold – from 75
to 357. This example highlights a key consideration for focusing throughout this paper
on the elasticity definition in (14) to compare demand elasticities across different bonds
with heterogeneous characteristics.57

56The Koijen, Koulischer, Nguyen and Yogo (2020a) elasticity calculation is based on the weighted
average maturity of aggregate sovereign debt – on average 7 years – so is most comparable to long-term
debt elasticities reported elsewhere.

57An alternative definition sometimes used in this literature calculates the elasticity as the change in
quantity of bonds held with respect to the bond yield (Koijen and Yogo, 2020, Jiang et al., 2021b, Fang et
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Another application-specific reason for the elasticity definition chosen by this paper is
conceptual – understanding safe asset behaviour relative to risky assets calls for a defi-
nition in terms of portfolio rebalancing rather than absolute quantities of bonds. Other
important applications – such as the effects of purchases or sales of a given stock of assets
by central banks or of the change in the debt stock issued by governments or corporates
– might call for an estimate of changes to the quantity of bonds held in response to bond
price or yield fluctuations. These alternative definitions of demand elasticity can eas-
ily be implemented with the methodology developed here and are indeed summarized in
Appendix Tables 5 and C.16.

The next section explores the rich variation in fund sector demand elasticities flagged in
Table 4. Before that, however, I summarize another contribution of this study – estimates
of substitution or cross-elasticities in global bond markets.

Substitution elasticities Next, I summarize what the demand model estimates imply
for bond substitution elasticities or the change in portfolio weight of a given bond j in
response to a percentage point change in the return of another bond k (ηt(jk)). Like own
elasticities, I construct cross-elasticities by plugging in the estimated point estimates of
bond return sensitivities by fund type α̂T (i) into the second line of equation (14), along
with portfolio holdings data. This cross-elasticity measure suggests that bonds j and
k are close substitutes if: (i) as with own elasticities, the investors who hold them are
highly sensitive to return fluctuations such that they respond to the return of k (i.e.
have high α̂T (i)); (ii) investors with high holdings of bond j (captured in the investor

i weight
∑

i
AUMi,twi,t(j)∑
i(AUMi,twi,t(j))

) also hold a significant portfolio weight of the bond whose

return experiences the shock (wi,t(k)). Thus, if no investor universe includes a given pair
of bonds, then complete market segmentation arises (at least concerning the fund sector)
between them according to the bond demand model.

With over 5,000 bonds included in the estimation, the model could potentially produce
around 25 million substitution elasticities.58 This paper’s goal is to characterize the
behaviour of safe assets, so I focus on the substitution patterns that follow an increase
in the predicted excess return on the safest bond buckets – highly-rated liquid sovereign
bonds with a short maturity. The sovereign bonds with residual maturity of less than a
year issued by the US or Germany are of particular interest since they are the leading
safe assets of the two currency areas where funds studied in this paper are domiciled –
US and the euro area.59 In the Appendix (section C), I also report the cross-elasticities
from shocks to other segments of the US and German government yield curves.60

al., 2022), i.e. ∂ log(Qt(n))∗100
∂yt(n)

. This is also a function of bond maturity, as derived in Appendix equation

(B.25). Thus, it also generates greater dispersion in bond-specific elasticities as evident in the standard
deviation of this elasticity definition reported in Appendix Table C.16.

58The substitution matrix is not symmetric, as the formula for ηt(jk) in equation (15) shows. In the
bond pair for which I study the substitution elasticities in the next section, I generally find high correlation
between the mirror substitution elasticities (i.e. ηt(jk) and ηt(kj)) over time but their magnitudes can
differ as a shock emanating from a bond with a high portfolio weight spills over more to other bond
allocations.

59I sometimes use ”T-bills” as a short-hand for these buckets (although the term technically applies to
bonds with an issue maturity of a year or less, rather than a residual maturity of under a year).

60The estimated bond demand system offers a wealth of other substitution patterns that are worth
exploring in future work too. For instance, one could dig into the shocks to financial and non-financial
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Table 6 reports the mean and standard deviations of elasticities ηt(jk) with respect to
returns changes in the T-bills issued by the US, Germany, Switzerland and Japan. Sub-
stitution elasticities are less than or equal to zero, implying that the bonds modelled here
are substitutes in fund portfolio allocation decisions. This follows from the empirical es-
timates of α̂T (i) all being greater or equal to zero (Figure 5). The number of observations
is smaller than own elasticities, as cross-elasticities are only constructed from portfolios
which hold e.g. US T-bills (for the first row) and other bonds at the same time.

Table 6: Summary statistics for estimated cross-elasticities ηt(jk) w.r.t. changes in US,
German, Swiss, Japanese T-bill returns

Bond k Mean S.D. Median 1st %ile 99th %ile Obs.
US sov <1y -1.15 2.83 -0.35 -12.80 -0.00 77,243
DE sov <1y -0.25 1.17 -0.03 -3.91 -0.00 61,952
CH sov <1y -0.01 0.17 -0.00 -0.11 -0.00 17,242
JP sov <1y -0.31 1.73 -0.03 -5.26 -0.00 54,345

Note: Elasticities ηt(jk) aggregated for the entire fund sector. Each summary statistic is calculated across two

dimensions: bonds (j) and quarters with holdings data (t), while keeping bond k (source of the return shock) constant.

Starting with the substitution elasticities from US T-bills in the first row, these vary
between close to zero and 13%, with a median of around 1%. Digging further into this
range of percentages can reveal which bonds are sold by the fund sector the most in order
to accommodate an increase in the portfolio weight of US T-bills when the latter’s return
goes up. As may be expected by the smaller footprint of the German, Swiss and Japanese
T-bill markets, the substitutions following changes to their returns are smaller.

Sources of variation in elasticities The next section explores variation in own as
well as substitution elasticities to characterize safe assets though the prism of investor
demands. To recap on this section, estimated demand elasticities from this model can
vary both across bonds and over time. The main source of this variation is the composi-
tion of investors with different return sensitivity αT (i) as well as with different portfolio
composition. Investor composition is especially important in driving the dispersion of
own elasticities, accounting for almost all variation in elasticities across bonds and, on
average, around 86% of time variation in elasticities for a given bond. Portfolio exposure
to particular bonds interacts more significantly with investor return sensitivity when it
comes to the substitution elasticities, as substitution is facilitated by funds who invest in
a multitude of bonds.

5 Safe asset features

5.1 Safety and low demand elasticity

How do own demand elasticities vary across bonds with different characteristics? Much
of the previous finance literature on asset demand has focussed primarily on the average

corporates which spill over more widely and increase global systemic risk. Or map how policies aimed
at bond portfolio flows into and out of one emerging market (capital flow management measures or FX
interventions) spill over to other countries through international investors’ portfolio reallocation.
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slope of demand curves across a certain set of assets.61 The heterogeneous international
bond dataset allows me to also explore how demand elasticities vary by bond. I can
answer questions such as: (i) Do safe assets face lower demand elasticities than riskier
bonds? (ii) Does ’safety’ relate to the credit risk of a bond, its maturity (i.e. low duration
risk), the identity of the issuer or the currency of denomination?

Figure 6 addresses these questions by comparing the median elasticities across sovereign
bonds along three bond characteristics: credit rating, issuer region and bond maturity.
The fist panel suggests a very striking ranking of demand elasticities. The bonds with
lowest credit risk (rated AAA or AA) face the lowest demand elasticities from investment
funds. Demand elasticities then progressively increase as the credit rating deteriorates,
with the largest drop in elasticities between the top-rated bonds and bonds in the next-best
”A” rating scale. This suggests that top-rated sovereign bonds play a special role in the
portfolios of investment funds – even when returns fall, investors refrain from selling these
bonds to the same degree as they would sell junk bonds. This finding is consistent with
models which assign US Treasuries, for instance, a special status due to the non-pecuniary
’convenience yield’ offered by these assets (Krishnamurthy and Vissing-Jorgensen, 2012,
Jiang, Krishnamurthy and Lustig, 2021a). The underlying investor motivation to hold
more tightly on to these safe bonds could come from multiple sources such as greater
liquidity, collateral pledgeability, simplicity or regulatory requirements. It is worth noting
that in textbook CAPM models, the opposite is usually true – the demand elasticity of
risky assets should be lower. There, an investor requires a larger shift in risky asset returns
because increasing their portfolio share increases the overall portfolio risk by more.

But my empirical results flag this safe asset ’specialness’ is not merely a US phenomenon.
The second panel of Figure 6 ranks sovereign bond elasticities by the issuer region. Euro
area and other advanced issuers also face lower demand elasticities than emerging market
bond issuers. Surprisingly, euro area issuers face even lower demand elasticities than US
Treasuries. This is, of course, related to the investor base of euro area sovereign bonds and
becomes clear when comparing the ranking of demand elasticities by issuer region only for
US funds – in the second panel of Figure 7. For US funds, which hold a greater share of the
bond market value, US Treasuries are indeed the safe asset of choice. This highlights that
safe asset ’specialness’ interacts materially with the home bias of less return-sensitive euro
area funds. Indeed, Figure 8 shows that EA funds are both less sensitive to the returns on
bonds overall and least sensitive to their safest regional asset – top-rated sovereign bonds
issued by the euro area core countries.

61E.g. US equities in Koijen and Yogo (2019), US and UK stocks in Koijen et al. (2020b), euro area
bonds in Koijen et al. (2020a), government bonds in Fang et al. (2022), long-term / short-term debt /
equity in Koijen and Yogo (2020), Jiang et al. (2021b), exchange rates in (Camanho et al., 2022).
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Figure 6: Own elasticities η̄(jj) by bond characteristics – Sovereign bonds
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Note: Aggregate demand elasticities, averaged over time for each bucket. Bars report the median of these bucket-specific
time-average elasticities by each bond characteristic.

Figure 7: Own elasticities η̄(jj) by bond characteristics – Sovereign bonds, US funds
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Note: Aggregate demand elasticities, averaged over time for each bucket. Bars report the median of these bucket-specific
time-average elasticities by each bond characteristic.

Figure 8: Own elasticities η̄(jj) by bond characteristics – Sovereign bonds, EA funds
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Note: Aggregate demand elasticities, averaged over time for each bucket. Bars report the median of these bucket-specific
time-average elasticities by each bond characteristic.

The third panel of Figure 6 reveals another feature of safe assets – sovereign bonds with
maturity under a year face the lowest demand elasticity. The low duration risk is a feature
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particularly salient for EA funds as evident in Figure 8. Thus, safe assets face low demand
elasticities by investment funds and the most salient features of safe sovereign bonds are
their top-notch credit rating and the government backing them. Short maturity also plays
a role. And there is room for more than one safe asset (US Treasuries) because regional
investors have a home bias toward their regional safe asset.

To fully characterize safe assets through a comparison of elasticities across bonds, Ap-
pendix Figures D.29 and D.30 perform the same rankings for corporate bonds only as well
as for all bonds in the dataset (sovereign, corporate and supranational). For corporate
bonds, elasticities are highest for those below investment grade (rated ”BB” or ”B-D”)
but special role is attached to the credit-worthiest bonds (rated ”AAA-AA”). The ma-
turity of corporate bonds is also not an important aspect of differentiation in terms of
funds’ demand elasticity. EA corporate issuers still face low demand elasticities (partly
due to the home bias of less elastic EA funds) but US corporate bonds are not ’special’
like their government counterparts in the eyes of investment funds.

Finally, demand elasticities also vary a lot by bond currency but less systematically (Ap-
pendix Figure D.31). The euro faces the lowest demand elasticity and not only because of
EA funds’ home (currency) bias. The US dollar, on the other hand, faces a relatively high
demand elasticity and has little ’special’ value compared to other currencies unless the
issuer identity is taken into account. Many emerging market governments issue in dollars
and their funding currency mismatch makes them especially risky, which dominates the
median dollar-bond elasticity reported in Figure D.31.

In summary, the variation in own demand elasticities across bonds offers a new classi-
fication of safe assets based on the estimated demand elasticity of private international
investors. Low demand elasticities for what are usually perceived as safe assets reinforce
the need to understand the non-pecuniary value that investors derive from holding these.
Thanks to the granular bond data, this paper is in a unique position to clarify the features
of safe assets that make them special in investors’ eyes. These are primarily the low credit
risk, the issuing government, and short bond maturity (closer substitutability with cash).
Having a less elastic and home-biased investor base (potentially in conjunction with a
limited supply of safe bonds) – as in the case of the euro area – might help cement a
regional safe asset’s status too.

5.2 Global and regional safe assets: a bond substitution view

The next key aspect of safe assets I characterize is how changes in their returns spill over to
different segments of international bond markets. To that end, I examine the variation in
substitution elasticities with respect to a percentage point change in the expected excess
return on two key safe assets in the demand system in turn – US and German sovereign
bonds with maturity of less than 1 year. Which bonds do investors sell the most when
making room for a higher safe asset portfolio weight in response to that safe asset’s return
increase?

First, Figure 9 summarizes how portfolio spillovers (captured by funds’ substitution elas-
ticities) from US T-bills vary by key bond characteristics. A surprising ranking of substi-
tution elasticities by credit rating emerges from the first panel. Bonds that see greatest
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portfolio reallocations after a change in US T-bill returns are the riskiest bonds with
ratings of BB+ and lower. Bonds in the same broad rating bucket as US T-bills (”AAA-
AA”) still see rebalancing flows but only half of the magnitude experienced by risky bonds.
These results suggest that a higher return on the safest US Treasuries induces funds to
de-risk rather than sell bonds with a similar risk profile and keep the riskiness of their own
portfolio constant. If the source of the shock to US T-bill returns is US monetary policy
tightening, this ranking along bond credit ratings is consistent with a risk-taking channel
of monetary policy operating through investment fund holdings. Tracing the origins of
these aggregate substitution pattern to the portfolio rebalancing by US and EA funds in
Appendix Figures D.32 and D.33 confirms that riskier bonds see the greatest rebalancing
regardless of the identity of the US T-bills investor.

The second panel of Figure 9 highlights the issuer regions most and least affected by US
T-bill return shocks. Bonds issued by all regions other than euro area are significantly
affected. Supranational issuers other than the European Union (mostly development
banks that fund projects in developing countries), other US mostly corporate issuers
and Latin American bonds are the bonds experiencing the most significant spillovers. A
similar ranking of bond substitutions from US T-bills can be found when examining the
cross-elasticities of US and EA funds in Appendix Figures D.32 and D.33. EA funds are
particularly unlikely to substitute between US T-bills and euro area bonds. Consistent
with the substitutes’ ranking by issuer, substitutions by bond currency in the fourth panel
of Figure 9 are greatest for emerging market currencies such as the Indian rupee (INR),
Norwegian krona (NOK) and Mexican peso (MXN), and weakest for bonds denominated
in euros and the closely-linked currencies of Denmark (DKK) and Sweden (SEK).

Interestingly, the spillovers from US T-bill return changes are greatest for bonds of the
same short maturity (third panel of Figure 9) and this finding holds across funds domiciled
in the US and euro area alike. Thus, portfolio rebalancing by mutual funds across the
credit risk spectrum seems stronger than their rebalancing along the yield curve. In terms
of the issuer type (last panel of Figure 9), substitutions to corporate and sovereign bonds
are similar yet weaker than substitutions to the smaller pool of supranational bonds –
consistent with the elasticity ranking by issuer region discussed above.

These substitution patterns help understand the global role of US Treasuries as a safe
asset. Shocks to their returns spill over globally, across bonds with different credit ratings,
issuer types, regions and bond currencies. Surprisingly, the only regional segmentation
of these US return spillovers are to euro area bonds, which to some degree reflects the
composition of EA fund portfolios. The patterns discussed here are not an isolated feature
of the shortest-dated US Treasuries either – they also hold for the substitution patterns
observed in response to shifts to the returns of Treasuries with maturities greater than a
year (Appendix Figures D.36-D.38).
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Figure 9: Substitution elasticities η̄(jk) from US sovereign bonds with maturity of less
than 1 year by bond characteristics
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Note: Aggregate demand elasticities, averaged over time for each bucket. Bars report the median of these bucket-specific
time-average elasticities by each bond characteristic.

I next turn to the substitution elasticities following a shock to the predicted returns on the
safest asset in the euro currency area – German government bonds with residual maturity
of less than one year (Figure 10). For the sake of brevity, I continue to abuse the short-
hand ”T-bills” when describing these bonds. The portfolio spillovers across international
bonds from the safest euro area asset could not be more different to those from the safest
US asset. Investment funds that hold German T-bills react to that asset’s predicted return
increase by mostly reducing their exposure to similar bonds – those rated ”AA-” or higher
(first panel), issued by euro area (second panel) sovereigns (last panel), with a maturity
of under 1 year (third panel). The denomination of bonds with a highest substitutability
to German bonds is either also the euro or currencies of advanced economies such as
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the Japanese yen, Australian dollar, British pound, but not US dollars. Indeed, dollar-
denominated bonds see the least portfolio rebalancing in response to German bond return
shifts (fourth panel of Figure 10). This suggests that the leading safe assets of the dollar
and euro currency area (US and German T-bills) are not substitutable in mutual fund
portfolios.

Figure 10: Substitution elasticities η̄(jk) from German sovereign bonds with maturity
of less than 1 year by bond characteristics
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Note: Aggregate demand elasticities, averaged over time for each bucket. Bars report the median of these bucket-specific
time-average elasticities by each bond characteristic.

Most of these substitution patterns are shared among US (Appendix Figure D.34) and
EA funds (Appendix Figure D.35). They do not simply reflect the home bias of local
investors in euro area bond markets. The only substitution pattern that differs across
US and EA funds is the preference for sovereign over corporate bonds as German T-bill
substitutes. The latter pattern is driven by US funds’ portfolios, where German bunds
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are held in conjunction primarily with other sovereign bonds (Appendix Figure D.34). As
for US Treasury substitutes, these patterns are also remarkably stable regardless of which
segment of the German government yield curve I consider (Appendix Figures D.39-D.41).

These substitution patterns consistently suggest that the safest bonds of the dollar and
euro currency areas trigger very different international portfolio adjustments. Investment
funds reduce their portfolio allocation to bonds with high credit risk most to make room
for more US Treasuries holdings when the latter returns increase. In contrast, they
substitute safe, sovereign and euro area bonds for more German Bunds when the latter’s
return rises. These orthogonal portfolio spillovers of shocks to the two safe assets are
consistent with German Bund owners having a much more concentrated bond portfolio
– both geographically and in terms of risk exposures. The funds holdings US Treasuries,
on the other hand, are more diverse – their bond substitutions thus affect a more diverse
set of bonds. Hence, one safe asset plays a global role in international portfolios – US
Treasuries are the safe asset of choice across funds with diverse investment universes.
The other safe asset is regional – it provides a safe or liquid component in portfolios of
primarily euro area sovereign bonds.

Furthermore, this evidence enriches the conclusion drawn from own elasticities that both
US Treasuries and German Bunds are safe assets – as measured by their lower elasticity
of demand than other bonds. The strikingly different substitution results revealed in this
subsection emphasize that while both are safe assets, they are also very different safe
assets. US Treasuries provide the safe asset component to global portfolios with different
regional and risk profiles and thus their return changes spill over globally and across the
risk spectrum. German Bunds build the safe asset component only of bond portfolios
more concentrated on euro area safe assets. Shocks to German Bunds thus spill over
more locally.

5.3 Flight to safety

Next, I use the elasticity estimates to address the question whether safe asset ’specialness’
is stable or varies over time. Is funds’ demand for safety sensitive to general market
conditions and how? For instance, safe assets are often considered to be at the centre of
’flights to safety’ during periods of heightened stress in financial markets. Do international
investment funds contribute to this phenomenon and can we learn anything from their
heterogeneous behaviours during market stress? To this end I again examine the estimated
safe bonds’ demand elasticities – both relative to all bonds in the demand system (as
captured by their own elasticity) and relative to specific risky bonds (i.e. their cross-
elasticities) – but now focus on the time variation in specific series.

Focussing on the global safe asset – US Treasuries – I first summarize how its own demand
elasticity comoves with commonly-used measures of market risk. I remind the reader
that, as discussed at the end of Section 4, there are two sources of time variation in the
estimated safe asset elasticities given by equation (15): (ii) changes to the investor base of

the bond of interest,
∑

i
AUMi,twi,t(j)∑
i(AUMi,twi,t(j))

α̂T (i), and (ii) funds’ portfolio exposure to the safe

asset wi,t(k).
62 Across the four different maturity buckets of US Treasuries in particular,

62A reminder on subscripts: i indexes an individual fund; the bond whose predicted excess return
changes is indexed by k; and the bond whose holdings change in response is indexed by j; quarterly time
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investor composition changes account for at least 75% of variation in elasticities over time.

Table 7: Correlations between US sovereign bond elasticities and risk measures

US sov <1y US sov 1-5y US sov 5-10y US sov >10y
Elasticities
US sov <1y 1.000
US sov 1-5y 0.555∗∗∗ 1.000
US sov 5-10y 0.375∗∗∗ 0.564∗∗∗ 1.000
US sov >10y 0.294∗∗ 0.512∗∗∗ 0.453∗∗∗ 1.000
Risk
VIX -0.304∗∗ -0.265∗∗ -0.167 -0.245∗

BEX risk aversion -0.210 -0.215 -0.101 -0.222
BHL risk aversion -0.319∗∗ -0.195 -0.086 -0.187
MOVE 0.197 -0.013 -0.161 -0.187
EBP -0.044 -0.303∗∗ -0.269∗∗ -0.255∗

CISSEAbond -0.064 -0.214 -0.067 -0.233∗

Note: *** Significant at 1% level. ** Significant at 5% level. * Significant at 10% level.

Table 7 reports the pairwise correlations between the four buckets of US Treasuries in the
upper panel, and between each bucket’s elasticity and six different measures of market
stress in the lower panel. Reassuringly, time variation in elasticities of US Treasuries of
different maturity are significantly correlated with each other (top panel). They are also
negatively correlated with all measures of market stress – when aggregate risk aversion is
high, US Treasuries face the lowest demand elasticities. The pattern holds across different
Treasury maturities and different measures of risk aversion (based on equity markets
like VIX, on multiple asset classes – BEX and BHL, on Treasury markets – MOVE, on
US corporate bond markets – EBP, as well as on EA bond markets – CISSEAbond).
Investment funds value the safety of US Treasuries more in times of stress (have lower
demand elasticity) and contribute to the overall flight to safety patterns observed in
international financial markets.

Appendix Tables D.17-D.19 report the same elasticity correlations over time for three
other safe asset candidates – German, Swiss and Japanese sovereign bonds – and find
they are less of a focal point for flight to safety episodes. German elasticity have little
correlation with market stress and at long maturities even increase when risk aversion rises
at odds with a flight to safety. Swiss bonds experience lower demand elasticities during
market stress but predominantly at maturities of 5 years or longer, while the correlations
of Japanese bond demand elasticities with risk aversion suggest a flight to safety only to
the shortest-dated bonds.

So who are the funds that demand more US Treasuries than warranted by relative returns
during financial stress? Figure 11 compares the fluctuations in the US T-bill elasticity
(black line) to one of the risk aversion measures considered – the option-implied volatility
of long-dated US Treasuries, i.e. the MOVE index. For better visibility, key market and
policy events are marked with vertical red dashed lines. The Lehman Brothers collapse

periods are indexed by t.

51



at the pinnacle of market panic during the Global Financial Crisis (2008Q3) and the
lead-up to it saw a marked drop in the elasticity of US T-bills (from 200% to about
150%). Examining the underlying holdings data suggests this decline in elasticity can
be traced back to Treasuries buying by return-insensitive US passive balanced funds. In
a similar fashion, the market turmoil in March 2020 at the onset of the global COVID
pandemic coincides with a sharp fall in T-bills’ elasticity. This time the compositional
driver is buying by US passive fixed income funds – who were presumably channelling
increased savings (in response to greater uncertainty and lockdown measures) to the safest
assets. Interestingly, the same episode is associated with a much weaker decline in the
elasticities of US Treasuries with maturities of 1-10 years and even an increase in the
very long US Treasuries’ elasticity (Appendix Figure D.42). This is consistent with the
increased demand for cash and cash-like instruments (i.e. shorter-maturity bonds) and
the temporary illiquidity in long-term Treasury markets during this episode (He et al.,
2022). To sum up, return insensitive passive funds tend to buy the safe assets when risk
aversion increases. This may be due to their desire to return their portfolios closer to a
safe benchmark or to channel net inflows by end-investors to the least risky mutual funds.
Whichever the source, US Treasuries benefit from an increase in their ’specialness’ in bad
times.

Figure 11: Own demand elasticities ηt(jj) of US T-bills
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Black line: Funds’ demand elasticity for US Treasuries with maturity under 1 year to changes w.r.t. 1ppt change in its
predicted excess returns.

The evidence on safe asset own elasticities showcases how the relative safety compared to
all bonds in the demand system changes with time. I now turn to some of the key sub-
stitution elasticities of safe assets with risky bonds. Figure 12 tracks the substitutability
between long-dated US Treasuries and ”BBB”-rated US corporate bonds of compara-
ble maturity. Now, when the black line (substitution elasticity) increases, the safe and
risky bonds become worse substitutes. Strikingly, times of heightened market stress (high
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MOVE index) coincide with low substitutability between US Treasuries and risky corpo-
rate bonds. At the height of the global financial crisis in 2008, the substitution elasticity
of US corporate bonds in response to US Treasuries halves (from -12% to -6%) and only
returns back to pre-crisis levels toards the end of 2013. The COVID market turmoil
in March 2020 sees the elasticity tick up again (i.e. substitutability declines) but only
marginally so perhaps thanks to the swift intervention of the Fed in US corporate bond
markets (Gilchrist, Wei, Yue and Zakraǰsek, 2020). Appendix Figure D.43 compares the
US Treasury-BBB US corporate bond substitutability across all four maturity buckets
and confirms that safe-risky bond substitution declines with market stress.

This relative aspect of flight to safety is particularly important for the transmission of
monetary policy through portfolio rebalancing by private investors. The most commonly
used monetary policy tools – conventional rate changes, forward guidance as well as
government bond purchases – affect the rate of return on safe assets of different maturities.
Textbook monetary policy transmission assumes the shift in the return on safe assets
transmits to riskier assets and ultimately to broader borrowing costs partly through the
rebalancing of private investors’ portfolios away from (the lower yielding) safe assets and
towards riskier (higher return) assets. My results suggest the effective transmission of
monetary policy through substitution from safe to risky assets changes over time and, in
particular, during periods of heightened stress.

To give a sense of the economic significance of these changes to the substitutability between
safe and risky assets, I perform a back-of-the-envelope calculation of the fund rebalancing
to BBB corporate bonds following Fed purchases of US Treasuries under different bond
demand elasticities. Suppose the Fed purchases $100 billion US Treasuries from the
fund sector.63 Let’s assume the purchases are made during tranquil times to counter
a recession, not a financial crisis. This implies that funds have a higher-than-average
demand elasticity for US Treasuries of around 210%64 and would need returns to decrease
by 5-21 basis points to part with their Treasury holdings. As an example, let us also
assume the purchases are spread along the four maturity buckets in the same way as they
were during the Fed’s QE2 programme announced in late 2011 (6% under 1 year, 43% 1-5
years, 44% 5-10 years, 7% over 10 years). I take into account all US BBB corporate bond
substitutions (i.e. 16 in total – 4 substitution elasticities in response to each of the four
US Treasury buckets) and calculate the implied overall increase in funds’ corporate bond
allocation is 5%. Fund holdings of US BBB-rated corporate bonds are $556 billion at the
end of 2020, so this 5% increase corresponds to $28 billion corporate bond purchases. Of
course, these calculations do not take into account changes to expected corporate bond
returns required to clear markets after the increase in demand or the effects of channels
other than portfolio rebalancing on corporate bond returns. I, therefore, find them useful
primarily as a comparison to the numbers implied from the same partial equilibrium
exercise but using demand elasticities from a different period.

63In reality the Fed purchases bonds from a variety of sectors but also the overall size of its QE
programmes have been several times larger than $100 billion. For instance, the latest round of QE in
response to the COVID pandemic outbreak in early 2020 saw the Fed purchase $2 trillion worth of US
Treasuries.

64This figure corresponds to the average elasticity across the four maturity buckets of US Treasuries.
The bucket-specific elasticities are 218% for bonds with less than a year until maturity, 195% for 1-5 year
bonds, 219% for 5-10 year bonds, and 210% for bonds with maturity over 10 years.
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Looking instead at the lower demand elasticities for US Treasuries and lesser substitutabil-
ity with risky bonds during periods of financial stress implies much more limited portfolio
rebalancing flows into US BBB corporate bonds from the same amount of US Treasury
purchases. During periods of stress the average demand elasticity of US Treasuries is
lower (130% average across the four maturity buckets) as investors are less willing to part
with the safety or liquidity benefits yielded by these assets. Funds thus require a larger
adjustment in US Treasury returns – a fall by 8-33 basis points depending on the maturity
bucket – to induce them to sell to the Fed. Even so, the worse substitutability between
risky BBB-rated corporate bonds and Treasuries at times of heightened risk implies only
half of the portfolio rebalancing compared to normal times. Specifically, funds increase
their corporate bond holdings by only 2.5% or $14 billion, according to end-2020 holdings.
Albeit quite rough and partial, these calculations flag that the portfolio rebalancing chan-
nel of Treasury purchases may be severely impaired during financial crises when investors
are less willing to substitute between safe and risky assets. This likely has broader im-
plications for asset prices and the transmission of monetary policy, and ultimately affects
the financing conditions for the real economy.

Figure 12: Substitutability of US corporate bonds (BBB-rated, over 10y maturity) with
US Treasuries
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Finally, I show that the decline in substitutability between safe and risky assets is not
limited to one safe asset by examining the time variation in the substitutability of German
Bunds with other riskier bonds. Consistent with the concentration of German Bund
substitutes within euro area sovereigns and motivated by the euro area crisis that unfolded
in the middle of my estimation sample (2010–2012), I differentiate between sovereigns
perceived to be in the euro area ’core’ and ’periphery’.
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Figure 13 compares the substitutability of Germany with one of the ’core’ euro area coun-
tries – France. The two governments’ bonds are close to unsubstitutable at the height
of the GFC in late-2008 but as market stress eases post-crisis France becomes a better
substitute for Germany (substitution elasticity becomes more negative) by the end of
2009. At first, when Greek debt problems become clear in early 2010, substitutability
between the euro area core countries improves. But by the end of 2010 when contagion
spreads across the euro area65 the status of French government bonds as substitutes for
Germany sharply deteriorates (the elasticity jumps towards zero). French substitutabil-
ity with German Bunds only partly recovers towards the end of the sample – from 2018
onwards. The figure plots the substitutability against the French-German yield spread,
highlighting that demand elasticities provide distinct information from observable market
rates. The decline in substitutability and widening of French-German spreads at the end
of 2010 broadly coincide but elasticities provide additional information on private investor
behaviour during the later period when spreads remain very stable, partly supported by
significant intervention by the European Central Bank in euro area sovereign bond mar-
kets. Appendix Figures D.44 and D.45 document similar dynamics of the substitutability
of two other euro area core countries – Belgium and Netherlands – with safe German
Bunds.

Figure 13: Substitutability of German and French sovereign bonds
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Black line: Substitution elasticity of French sovereign bonds w.r.t. 1ppt change in predicted excess returns on German
sovereign bonds. Median of substitutions within all four maturity buckets (under 1y, 1-5y, 5-10y, over 10y).

I next turn to the euro area ’periphery’ and examine the substitutability of Spanish
government debt with German Bunds in Figure 14. In line with the widening of Spanish-

65The Deauville summit in October 2010, where French and German leaders Sarkozy and Merkel agree
that future euro area sovereign bailouts would involve private investor participation, is widely considered
a trigger of wider contagion within the euro area.
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German spreads, the substitution elasticity between euro area core and periphery deterio-
rates (jumps towards zero) already in early 2010 with the revision of Greek debt statistics.
Contagion from Greece to the euro area periphery happens instantaneously rather than
with a lag like to euro area core countries. What is most striking, however, is that while
Spanish-German spreads eventually compress after extensive policy interventions (by fis-
cal and monetary authorities alike), the substitutability of German and Spanish bonds in
mutual fund portfolios remains suppressed. A similar pattern of declining substitutability
between German Bunds and Italian government debt is shown in Appendix Figure D.46.

This persistent decline in the substitutability between euro area periphery and core could
have significant implications for the transmission of the euro area’s single monetary policy.
In particular, policies that only affect safe euro rates may have limited effects on borrowing
costs of the periphery. Unlike the time variation of risky asset substitutability with US
Treasuries, the euro area market segmentation seems worryingly more persistent and not
limited to short-lived market turmoil.

Figure 14: Substitutability of German and Spanish sovereign bonds
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Black line: Substitution elasticity of Spanish sovereign bonds w.r.t. 1ppt change in predicted excess returns on German
sovereign bonds. Median of substitutions within all four maturity buckets (under 1y, 1-5y, 5-10y, over 10y).

In summary, the time variation in bond elasticities reveals three important patterns: (i)
safe asset ’specialness’ increases in times of stress in line with flight to safety by mutual
funds; (ii) this implies substitutability between safe and risky assets is especially impaired
during market turmoil with significant implications for the effectiveness of monetary poli-
cies that rely on transmission from safe asset interest rates to riskier borrowers’ costs;
(iii) a persistent decline in the substitutability between German and peripheral euro area
sovereign debt indicates continuing market segmentation within the euro area even after
extensive sovereign bond purchases by the European Central Bank.
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6 Conclusions

This paper estimates international bond demand by mutual funds using a rich and granu-
lar dataset of security-level holdings. Investor heterogeneity in bond preferences combined
with a rich set of fund and bond controls allows the estimation of demand elasticities across
international bonds of various credit quality and maturity, issued by different countries
and sectors, in many currencies. Demand elasticities for highly-rated sovereign bonds with
short maturities are estimated to be lowest, while risky, corporate or emerging market
bonds face roughly double the elasticities. Estimated low bond demand elasticities offer
a new measure of safe asset ’specialness’ rooted in observed investor behaviour.

In addition, substitution elasticities with respect to safe asset returns reveal no two safe
assets are the same in investors’ eyes. US Treasuries are a global safe asset and any
shock to their returns trickles globally via international portfolio allocations. Risky and
emerging market bonds experience the greatest spillovers. German Bunds, on the other
hand, play a regional safe asset role and shocks to their returns affect primarily the
portfolio allocations to other highly-rated euro area sovereign bonds. Strikingly, safe
asset ’specialness’ increases in times of market stress and the substitutability between
safe and risky assets deteriorates. This implies a major impairment in the effectiveness
of monetary policies that rely on private investors to intermediate impulses from safe
interest rates to riskier parts of bond markets during times of stress.

More broadly, the dataset and methodology developed in this paper deliver a detailed
mapping of demand elasticities in global bond markets that can be used to evaluate the
international financial transmission of a range of risk or policy shocks. Heterogeneous
bond substitutability across borders implies variable degrees of international financial
integration across different segments of the bond market. Such heterogeneous market
segmentation can have profound implication for the cross-border transmission of shocks
as well as long-term economic outcomes (Kleinman, Liu, Redding and Yogo, 2023).
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A Dataset

Figure A.15: Morningstar debt security holdings: representativeness vs financial ac-
counts
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Figure A.16: Refinitiv debt security types – by pricing data availability
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Table A.8: Top 30 funds by bond holdings, MV as of end-2020

Fund Firm Category Domicile Rank BondMV USDbn
Vanguard Total Intl Bd Idx Institutional Vanguard Fixed Income US 1 149.4
Vanguard Short-Term Bond Index Inv Vanguard Fixed Income US 2 57.67
iShares Core US Aggregate Bond ETF iShares Fixed Income US 3 57.04
Metropolitan West Total Return Bd M Metropolitan West Funds Fixed Income US 4 54.74
Vanguard Short-Term Investment-Grade Inv Vanguard Fixed Income US 5 48.71
iShares iBoxx $ Invmt Grade Corp Bd ETF iShares Fixed Income US 6 47.34
GS USD Treasury Liq Res Pref Acc Goldman Sachs Asset Management Fund Services Ltd Money Market IE 7 41.61
Fidelity US Bond Index Fidelity Investments Fixed Income US 8 38.48
Vanguard Interm-Term Corp Bd Idx Instl Vanguard Fixed Income US 9 37.82
Vanguard Interm-Term Bond Index Inv Vanguard Fixed Income US 10 37.14
American Funds Bond Fund of Amer A American Funds Fixed Income US 11 36.94
PIMCO Income Instl PIMCO Fixed Income US 12 36.91
Vanguard Short-Term Corp Bd Idx I Vanguard Fixed Income US 13 36.15
American Funds American Balanced A American Funds Allocation US 14 32.71
PIMCO Total Return Instl PIMCO Fixed Income US 15 31.00

JPM USD Treasury CNAV Ins (dist.) JPMorgan Asset Management (Europe) S.Ã r.l. Money Market LU 16 30.69
PGIM Total Return Bond A PGIM Funds (Prudential) Fixed Income US 17 29.62
Dodge & Cox Income Dodge & Cox Fixed Income US 18 29.46
Vanguard Wellesley Income Inv Vanguard Allocation US 19 28.73
Vanguard Interm-Term Invmt-Grade Inv Vanguard Fixed Income US 20 28.58
Vanguard Wellington Inv Vanguard Allocation US 21 27.89
Lord Abbett Short Duration Income A Lord Abbett Fixed Income US 22 25.91
Vanguard High-Yield Corporate Inv Vanguard Fixed Income US 23 23.40
iShares iBoxx $ High Yield Corp Bd ETF iShares Fixed Income US 24 23.33
Western Asset Core Plus Bond I Franklin Templeton Investments Fixed Income US 25 21.40
Fidelity Series Investment Grade Bond Fidelity Investments Fixed Income US 26 20.80

AB American Income C Inc AllianceBernstein (Luxembourg) S.Ã r.l. Fixed Income LU 27 20.71
BlackRock High Yield Bond K BlackRock Fixed Income US 28 19.77
iShares 1-3 Year Treasury Bond ETF iShares Fixed Income US 29 19.11
iShares 20+ Year Treasury Bond ETF iShares Fixed Income US 30 19.08
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Table A.9: Summary of funds’ bond portfolios

All funds EA bond US bond EA allocation US allocation EA MMFs
Portfolio of: mean mean mean mean mean mean
Mat. bucket under1y 0.20 0.08 0.07 0.11 0.07 0.85
Mat. bucket 1-5y 0.39 0.41 0.39 0.43 0.38 0.33
Mat. bucket 5-10y 0.36 0.39 0.39 0.37 0.38 0.26
Mat. bucket over10y 0.21 0.21 0.21 0.18 0.20 0.31
Weighted maturity 6.51 7.41 8.01 6.58 8.09 1.01
Rating bucket AAA-AA 0.44 0.37 0.38 0.50 0.42 0.53
Rating bucket A 0.22 0.22 0.18 0.20 0.19 0.33
Rating bucket BBB 0.27 0.30 0.28 0.25 0.25 0.29
Rating bucket BB 0.10 0.11 0.14 0.08 0.10 0.06
Rating bucket B-D 0.07 0.10 0.10 0.06 0.07 0.03
Asset type cor 0.57 0.55 0.61 0.47 0.59 0.68
Asset type sov 0.46 0.48 0.42 0.54 0.43 0.40
Asset type sup 0.04 0.05 0.02 0.06 0.01 0.09
USD bonds 0.63 0.51 0.88 0.27 0.89 0.64
EUR bonds 0.47 0.63 0.15 0.69 0.10 0.87
CHF bonds 0.30 0.30 0.03 0.42 0.04 0.79
JPY bonds 0.15 0.14 0.11 0.08 0.11 0.36
GBP bonds 0.14 0.12 0.05 0.06 0.04 0.60
US bonds 0.42 0.25 0.68 0.18 0.75 0.18
DE bonds 0.11 0.12 0.04 0.18 0.03 0.15
FR bonds 0.10 0.12 0.02 0.14 0.02 0.21
IT bonds 0.09 0.10 0.02 0.11 0.02 0.21
ES bonds 0.06 0.07 0.02 0.08 0.01 0.14

Table A.10: Summary of funds, with Active Share

Fund Type
Number of

Funds %All-fund AUM %Outstanding
AUM USDmil

(Median)
AUM USDmil

(90th Percentile)

Active Share %

(Median)

Active Share %

(90th Percentile)

US bond passive 524 20 0.95 294 3,446 33 45

US bond active 676 29 1.35 384 4,404 45 56

EA bond passive 949 9 0.62 142 1,069 35 44

EA bond active 1,006 13 0.73 187 1,547 45 53

US balanced passive 135 8 0.10 316 3,876 27 41

US balanced active 203 13 0.25 350 4,013 41 51

EA balanced passive 375 2 0.05 62 516 35 45

EA balanced active 595 5 0.15 89 876 45 51

Bond Active Share : Sum of absolute bond portfolio weight deviations from market-value-weighted fund bond universe
weights, divided by 2 (Koijen, Richmond and Yogo, 2020b). Passive / Active : funds with below- / above-median Bond
Active Share, on average over time.
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Figure A.17: Distribution of Bond Active Share by 4 broad fund types
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Bond Active Share : Sum of absolute bond portfolio weight deviations from market-value-weighted fund bond universe
weights, divided by 2 (Koijen, Richmond and Yogo, 2020b).

Table A.11: Summary of funds over time

Year Number of Funds %Outstanding
AUM USDmil

(Median)
AUM USDmil

(90th Percentile)
Active Share %

(Median)
Active Share %
(90th Percentile)

2007 2,086 2.31 184 1,686 40 49
2008 2,487 2.29 162 1,463 40 49
2009 2,903 2.80 143 1,237 40 50
2010 3,236 3.58 169 1,530 40 50
2011 3,603 3.47 159 1,558 41 50
2012 3,950 3.80 160 1,690 41 50
2013 4,253 3.95 172 1,854 41 50
2014 4,660 4.33 172 1,987 41 50
2015 5,078 4.81 164 1,918 41 50
2016 5,429 5.05 164 1,937 41 51
2017 5,726 5.45 178 2,042 41 50
2018 6,018 5.36 178 2,130 41 51
2019 6,471 5.85 182 2,097 41 53
2020 6,586 5.68 192 2,188 42 56

Table A.12: Persistence of bond holdings

Previous Quarters

Fund Type 1 2 3 4 5 6 7 8 9 10 11

US bond passive 92 93 93 94 94 95 95 95 95 95 95

US bond active 90 91 92 92 93 93 94 94 94 94 94

EA bond passive 91 92 93 93 94 94 94 95 95 95 95

EA bond active 89 90 91 92 93 93 93 93 94 94 94

US balanced passive 93 94 94 95 95 95 95 95 95 95 96

US balanced active 90 91 92 92 93 93 93 93 94 94 94

EA balanced passive 91 92 93 93 94 94 94 94 94 95 95

EA balanced active 89 90 91 91 92 92 92 93 93 93 93
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B Derivation of bond demand model

B.1 Baseline international CAPM with risk-free outside asset

Investment fund i (i = 1, . . . , I) chooses allocation across |Ni,t| risky assets (Ni,t ⊆
{1, . . . , N}) and one outside asset. Gross returns are expressed in investor i’s currency
and stacked in |Ni,t|-dimensional vectorRi,t+1. The return on the outside asset is Ri,t+1(0)
and assumed to be risk-free (as implicitly imposed by Koijen and Yogo (2019) by choosing
log-utility). There are two periods t and t+1, with investors allocating initial wealth Ai,t
and deriving utility from net-period wealth Ai,t+1. Risk preferences are characterized by
constant relative risk aversion (CRRA) parameter ρi,t which is investor- and time-specific.
I do not make any assumption about the data-generating process behind ρi,t.

Investor i chooses a vector wi,t of portfolio weights across bonds in his universe to max-
imize expected utility from period t + 1 wealth subject to budges and short-selling con-
straints:

max
wi,t

Ei,t

[A1−ρi,t
i,t+1

1− ρi,t

]
s.t. Ai,t+1 = Ai,t[Ri,t+1(0) +w′

i,t(Ri,t+1 −Ri,t+1(0)1)] (B.1)

wi,t ≥ 0 (B.2)

1′wi,t ≤ 1 (B.3)

Assuming Ai,t+1 is lognormal, the objective function and budget constraint can be re-
written in logs. This gives a standard mean-variance optimization problem:

max
wi,t

Ei,t

[A1−ρi,t
i,t+1

1− ρi,t

]
= max

wi,t

lnEi,t

[
A

1−ρi,t
i,t+1

]
= max

wi,t

(1− ρi,t)Ei,tai,t+1 +
1

2
(1− ρi,t)

2σ2
ai,t

s.t. ai,t+1 = ai,t + rp,i,t+1 where rp,i,t+1 = ln(Rp,i,t+1)

where small-case letters denote natural logarithms of level variables, e.g. ai,t = ln(Ai,t),
and Rp,i,t+1 is the gross portfolio return of investor i.

Divide the above by (1− ρi,t) and substitute in the log-budget constraint for ai,t+1:

max
wi,t

Ei,trp,i,t+1 +
1

2
(1− ρi,t)σ

2
rp,i,t (B.4)

where σ2
rp,i,t denotes the conditional variance of log portfolio returns.

To proceed, the log portfolio returns need to be related to log returns on individual
bonds. This is done using the approximation of the portfolio return from Campbell and
Viceira (2002, equation 2.23):

rp,i,t+1 − ri,t+1(0) = w′
i,t(ri,t+1 − ri,t+1(0)1) +

1

2
w′
i,tσ

2
i,t −

1

2
w′
i,tΣi,twi,t (B.5)

where Σi,t is the conditional covariance matrix of individual excess bond returns ri,t+1,
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and σ2
i,t is a vector containing their variances (the diagonal elements of Σi,t):

Σi,t ≡ Ei,t

[(
ri,t+1 − ri,t+1(0)1−Ei,t(ri,t+1 − ri,t+1(0)1)

) (
ri,t+1 − ri,t+1(0)1

)′]

To arrive at the optimization in terms of mean and variance of returns, we note these are
given by:

Ei,t

[
rp,i,t+1 − ri,t+1(0)

]
= w′

i,tEi,t

[
ri,t+1 − ri,t+1(0)1

]
+

1

2
w′
i,tσ

2
i,t −

1

2
w′
i,tΣi,twi,t

σ2
rp,i,t = w′

i,tΣi,twi,t

The investor then chooses portfolio weights to maximize the objective:

max
wi,t

Ei,trp,i,t+1 +
1

2
(1− ρi,t)σ

2
rp,i,t

=max
wi,t

w′
i,tEi,t

[
ri,t+1 − ri,t+1(0)1

]
+

1

2
w′
i,tσ

2
i,t −

1

2
w′
i,tΣi,twi,t +

1

2
(1− ρi,t)w

′
i,tΣi,twi,t

=max
wi,t

w′
i,tEi,t

[
ri,t+1 − ri,t+1(0)1

]
+

1

2
w′
i,tσ

2
i,t −

1

2
ρi,tw

′
i,tΣi,twi,t

This re-arrangement of the constrained problem gives the Lagrangian:

Li,t = w′
i,tEi,t

[
ri,t+1 − ri,t+1(0)1

]
+

1

2
w′
i,tσ

2
i,t −

1

2
ρi,tw

′
i,tΣi,twi,t + Λ′

i,twi,t + λi,t(1− 1′wi,t)

(B.6)

with first-order condition:

∂Li,t
∂wi,t

= Ei,t

[
ri,t+1 − ri,t+1(0)1

]
+
σ2
i,t

2
− ρi,tΣi,twi,t + Λi,t − λi,t1 = 0 (B.7)

implying optimal portfolio weight:

ρi,tΣi,twi,t = Ei,t

[
ri,t+1 − ri,t+1(0)1

]
+
σ2
i,t

2
+ Λi,t − λi,t1

wi,t = (ρi,tΣi,t)
−1
(
Ei,t

[
ri,t+1 − ri,t+1(0)1

]
+
σ2
i,t

2︸ ︷︷ ︸
≡µi,t

+Λi,t − λi,t1
)

(B.8)

which is exactly the same as equation (A4) in Koijen and Yogo (2019) apart from the
risk-aversion parameter ρi,t being different from one and allowed to vary over time.

Next, to derive an expression for the Lagrange multipliers, partition the bonds into two
groups – those for which the short-sale constraint is not binding and those for which it
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binds:

Λi,t =

[
0

Λ
(2)
i,t

]
; wi,t =

[
w

(1)
i,t

0

]
; µi,t =

[
µ
(1)
i,t

µ
(2)
i,t

]
; Σi,t =

[
Σ

(1,1)
i,t Σ

(1,2)
i,t

Σ
(2,1)
i,t Σ

(2,2)
i,t

]
.

The inverse return covariance matrix is:

Σ−1
i,t =

[
Ω

(1)
i,t −Σ

(1,1)−1
i,t Σ

(1,2)
i,t Ω

(2)
i,t

−Σ
(2,2)−1
i,t Σ

(2,1)
i,t Ω

(1)
i,t Ω

(2)
i,t

]
.

where

Ω
(1)
i,t =

(
Σ

(1,1)
i,t −Σ

(1,2)
i,t Σ

(2,2)−1
i,t Σ

(2,1)
i,t

)−1

Ω
(2)
i,t =

(
Σ

(2,2)
i,t −Σ

(2,1)
i,t Σ

(1,1)−1
i,t Σ

(1,2)
i,t

)−1

Then re-write the optimal portfolio allocation:

wi,t = (ρi,tΣi,t)
−1
(
µi,t + Λi,t − λi,t1

)
[
w

(1)
i,t

0

]
=

 1
ρi,t

[
Ω

(1)
i,t (µ

(1)
i,t − λi,t1)−Σ

(1,1)−1
i,t Σ

(1,2)
i,t Ω

(2)
i,t (µ

(2)
i,t + Λ

(2)
i,t − λi,t1)

]
1
ρi,t

[
−Σ

(2,2)−1
i,t Σ

(2,1)
i,t Ω

(1)
i,t (µ

(1)
i,t − λi,t1) +Ω

(2)
i,t (µ

(2)
i,t + Λ

(2)
i,t − λi,t1)

] (B.9)

Multiplying the second block by Σ
(1,1)−1
i,t Σ

(1,2)
i,t and adding the two blocks, simplifies the

positive portfolio weights expression:

w
(1)
i,t =

1

ρi,t

[(
Ω

(1)
i,t −Σ

(1,1)−1
i,t Σ

(1,2)
i,t Σ

(2,2)−1
i,t Σ

(2,1)
i,t Ω

(1)
i,t

)
(µ

(1)
i,t − λi,t1)

]
=

1

ρi,t

[(
I−Σ

(1,1)−1
i,t Σ

(1,2)
i,t Σ

(2,2)−1
i,t Σ

(2,1)
i,t

)
Ω

(1)
i,t (µ

(1)
i,t − λi,t1)

]
=

1

ρi,t

[
Σ

(1,1)−1
i,t Σ

(1,1)
i,t

(
I−Σ

(1,1)−1
i,t Σ

(1,2)
i,t Σ

(2,2)−1
i,t Σ

(2,1)
i,t

)
Ω

(1)
i,t (µ

(1)
i,t − λi,t1)

]
=

1

ρi,t

[
Σ

(1,1)−1
i,t Ω

(1)−1
i,t Ω

(1)
i,t (µ

(1)
i,t − λi,t1)

]
=

1

ρi,t

(
Σ

(1,1)
i,t

)−1

(µ
(1)
i,t − λi,t1)

By definition, the portfolio weight on the outside asset is then:

wi,t(0) = 1− 1′w
(1)
i,t

= 1− 1′
(
ρi,tΣ

(1,1)
i,t

)−1

(µ
(1)
i,t − λi,t1) (B.10)
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We examine the case when constraint 1′wi,t ≤ 1 binds (i.e. zero investment in outside
asset) to obtain the expression for its Lagrange multiplier:

1′w
(1)
i,t = 1′

(
ρi,tΣ

(1,1)
i,t

)−1

(µ
(1)
i,t − λi,t1) = 1

1′
(
ρi,tΣ

(1,1)
i,t

)−1

µ
(1)
i,t − 1′

(
ρi,tΣ

(1,1)
i,t

)−1

1λi,t = 1

1′
(
ρi,tΣ

(1,1)
i,t

)−1

1λi,t = 1′
(
ρi,tΣ

(1,1)
i,t

)−1

µ
(1)
i,t − 1

λi,t =
1′
(
ρi,tΣ

(1,1)
i,t

)−1

µ
(1)
i,t − 1

1′
(
ρi,tΣ

(1,1)
i,t

)−1

1

⇒ λi,t = max

{1′
(
ρi,tΣ

(1,1)
i,t

)−1

µ
(1)
i,t − 1

1′
(
ρi,tΣ

(1,1)
i,t

)−1

1
, 0

}
(B.11)

Characteristics-based demand We let xi,t(n) denote a K-dimensional vector of ob-
served characteristics of bond n and let investors form heterogeneous beliefs about asset
returns based on both these observable characteristics and unobservable (to the econome-
trician) log(ϵi,t(n)). Investor i ’s information set for asset n is collected in vector x̂i,t(n),
where I separate the endogenous predicted excess returns from other observable charac-
teristics, in keeping with Koijen and Yogo (2019):

x̂i,t(n) =

perχ(i),t(n)xi,t(n)
log(ϵi,t(n))

 (B.12)

From these, we form anMth-order polynomial of characteristics as the following
∑M

m=1(K+
2)m-dimensional vector yi,t(n):

yi,t(n) =

 x̂i,t(n)
vec[x̂i,t(n)x̂i,t(n)

′]
...

 (B.13)

Assumption: Returns have a one-factor structure, with both expected returns and factor
loadings a function of the asset characteristics:

µi,t(n) = yi,t(n)
′Φi + ϕi,t

Γi,t(n) = yi,t(n)
′Ψi + ψi,t

Σi,t = Γi,tΓ
′
i,t + γi,tI, γi,t > 0

where to map into the panel estimation specification of this paper, I keep the coefficients
that relate bond characteristics to return expectations Φi and factor loadings Ψi constant
over time (but heterogeneous across investors).
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For the subset of assets for which the short-sale constraint is not binding, we have:

µ
(1)
i,t = y

(1)
i,t

′
Φi + ϕi,t1

Γ
(1)
i,t = y

(1)
i,t

′
Ψi + ψi,t1

w
(1)
i,t =

(
ρi,tΣ

(1,1)
i,t

)−1

(µ
(1)
i,t − λi,t1)

=
1

ρi,t

(
Γ

(1)
i,t Γ

(1)′

i,t + γi,tI
)−1

(µ
(1)
i,t − λi,t1)

=
1

ρi,tγi,t

(
I+

Γ
(1)
i,t Γ

(1)′

i,t

γi,t

)−1

(µ
(1)
i,t − λi,t1)

=
1

ρi,tγi,t

(
I−

Γ
(1)
i,t (I+

Γ
(1)′

i,t Γ
(1)
i,t

γi,t︸ ︷︷ ︸
scalar

)−1Γ
(1)′

i,t

γi,t

)
(µ

(1)
i,t − λi,t1)

=
1

ρi,tγi,t

(
I−

Γ
(1)
i,t Γ

(1)′

i,t

γi,t + Γ
(1)′

i,t Γ
(1)
i,t

)
(µ

(1)
i,t − λi,t1)

=
1

ρi,tγi,t

(
µ
(1)
i,t − λi,t1− Γ

(1)
i,t

Γ
(1)′

i,t

γi,t + Γ
(1)′

i,t Γ
(1)
i,t

(µ
(1)
i,t − λi,t1)︸ ︷︷ ︸

κi,t=scalar

)

=
1

ρi,tγi,t

(
µ
(1)
i,t − λi,t1− Γ

(1)
i,t κi,t

)
=

1

ρi,tγi,t

(
y
(1)
i,t

′
Φi + ϕi,t1− λi,t1− (y

(1)
i,t

′
Ψi + ψi,t1)κi,t

)
=

1

ρi,tγi,t

(
y
(1)
i,t

′
(Φi −Ψi) + (ϕi,t − λi,t − ψi,tκi,t)1

)
w

(1)
i,t =

1

ρi,t

(
y
(1)
i,t

′
Πi,t + πi,t1

)
(B.14)

where Πi,t ≡ Φi−Ψi

γi,t
; πi,t ≡ ϕi,t−λi,t−ψi,tκi,t

γi,t
– exactly as in Koijen and Yogo (2019) apart

from the constant structural parameters Φi, Ψi and the heterogeneous, time-varying risk
aversion ρi,t.

Under the following parameter restrictions on Πi,t and πi,t:

Πi,t

wi,t(0)
=

 β̂i
vec(β̂iβ̂

′
i)

...

 ; and πi,t = wi,t(0), (B.15)
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bond demand can be expressed as an exponential function of characteristics:

wi,t(n)

wi,t(0)
=

1

ρi,t

(
yi,t(n)

′ Πi,t

wi,t(0)
+

πi,t
wi,t(0)

1

)
=

1

ρi,t

(
1 + yi,t(n)

′β̂i

)
=

1

ρi,t

(
1 + x̂i,t(n)

′β̂i +
vec(x̂i,t(n)x̂i,t(n)

′)′ vec(β̂iβ̂
′
i)

2
+ . . .

)
=

1

ρi,t

M∑
m=0

(
x̂i,t(n)

′β̂i
)m

m!
−−−−→
M→∞

1

ρi,t
exp

{
x̂i,t(n)

′β̂i
}

(B.16)

Plugging this expression into the constraint
∑|Ni,t|

n=1 wi,t(n) +wi,t(0) = 1, we can write the
portfolio weights as functions of characteristics as follows:

wi,t(0) =
1

1 +
∑|Ni,t|

m=1
1
ρi,t

exp
{
x̂i,t(m)′β̂i,t

} ; wi,t(n) =

1
ρi,t

exp
{
x̂i,t(n)

′β̂i,t
}

1 +
∑|Ni,t|

m=1
1
ρi,t

exp
{
x̂i,t(m)′β̂i,t

} ;
Taking the ratio of the weight on any bond n and the outside asset, and then taking
logarithm of the ratio yields an empirical Logit estimation consistent with (12):

log
(wi,t(n)
wi,t(0)

)
= x̂i,t(n)

′β̂i,t − log(ρi,t) (B.17)

where the vector of relevant characteristics x̂i,t(n) is described in Section ?? and investor-
specific changes in risk preferences ρi,t (as well as other unobservable changes to investor
i’s overall reported bond portfolio) are captured by investor-time fixed effect ζi,t.

B.2 Allowing for a risky outside asset

A natural extension of the model above involves relaxing the assumption that the outside
asset Ri,t+1(0) is risk-free.

66 This may be interpreted literally, as the non-bond investments
of some of the funds in the Morningstar dataset are indeed in risky equity. But it also
corresponds to situations where the outside investment opportunities change with time,
e.g. as a result of financial innovation or due to constraints on the fund investment
universe coming from regulation or internal (to the financial institution offering a given
fund) risk management requirements. In addition, a portfolio optimisation problem with a
risky outside asset is isomorphic to one where asset managers are compensated depending
on their portfolio performance relative to a benchmark index as in Kashyap et al. (2021)
or Pavlova and Sikorskaya (2022). In that case, the interpretation of fund preferences
for bond characteristics also reflects their relation to bond return comovement with the
benchmark index.

As in the baseline model (Section B.1) investor i chooses bond portfolio weights to max-

66A risk-free outside asset is implicitly assumed also in Koijen and Yogo (2019) by choosing log-utility
investor preferences.
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imize one-period-ahead wealth. The approximated portfolio return is the same function
of individual portfolio returns and their variance and covariances:

rp,i,t+1 − ri,t+1(0) = w′
i,t(ri,t+1 − ri,t+1(0)1) +

1

2
w′
i,tσ

2
i,t −

1

2
w′
i,tΣi,twi,t (B.18)

but now greater care is required as this only holds if the return covariance matrix Σi,t and
its diagonal elements σ2

i,t are defined based on the excess returns over the risky outside
asset.

The expected excess portfolio return is unchanged, while portfolio variance is now also
affected by the variance of the outside asset return σ2

i,t(0) and its covariance with the
individual bond excess returns σi,t(rx, 0) (highlighted in red below):

Ei,t

[
rp,i,t+1 − rt+1(0)

]
= w′

i,tEi,t

[
rt+1 − rt+1(0)1

]
+

1

2
w′
i,tσ

2
i,t −

1

2
w′
i,tΣi,twi,t

σ2
rp,i,t = Vari,t[rt+1(0)] +w′

i,tΣi,twi,t + 2w′
i,tCovi,t[(rt+1 − rt+1(0)1), rt+1(0)]

= σ2
i,t(0) +w′

i,tΣi,twi,t + 2w′
i,tσi,t(rx, 0) (B.19)

Following the same steps as before, the optimal portfolio weight now takes into account
the covariance of the outside asset return with each bond return:

wi,t = (ρi,tΣi,t)
−1
(
Ei,t

[
rt+1 − rt+1(0)1

]
+
σ2
i,t

2︸ ︷︷ ︸
≡µi,t

+Λi,t − λi,t1
)
+
(
1− 1

ρi,t

)(
−Σ−1

i,t σi,t(rx, 0)
)

(B.20)

Two opposing effects arise from the risk associated with the outside asset: (i) the investor
favours assets with a positive covariance with the outside asset, as (for a given return)
that increases the expected simple return on the portfolio; (ii) this is traded off against
the increase in portfolio risk associated with this covariance.67

Moving on to characterize the allocation to bonds with non-binding short-sale constraint,
this again extends to account for covariances with the outside asset:

w
(1)
i,t =

1

ρi,t

(
Σ

(1,1)
i,t

)−1

(µ
(1)
i,t − λi,t1+ (1− ρi)σ

(1)
i,t (rx, 0))

where, as before, σ
(1)
i,t (rx, 0) denotes the sub-vector of bond-outside asset covariances

(σi,t(rx, 0) = [σ
(1)
i,t (rx, 0), σ

(2)
i,t (rx, 0)]

′).

And this implies the portfolio weight on the outside asset now also accounts for the
additional risk-return trade-off associated with the covariance between bonds and the

67For the case of log-utility (ρi,t = 1), these two considerations offset each other exactly. Then the only
difference from the riskless outside asset case is that excess returns (as well as their expectations, variances
and covariances) are different from total returns, so care is required with Ei,t

[
rt+1 − rt+1(0)1

]
,Σi,t, σ

2
i,t.

See discussion in Campbell & Viceira, ch.2.1.3, pp.24-25.

76



outside asset:

wi,t(0) = 1− 1′
(
ρi,tΣ

(1,1)
i,t

)−1

(µ
(1)
i,t − λi,t1+ (1− ρi)σ

(1)
i,t (rx, 0)) (B.21)

This trade-off is also reflected in the value of the Lagrange multiplier on the constraint
on the sum of portfolio weights on bonds and the outside asset (3):

λi,t = max

{1′
(
ρi,tΣ

(1,1)
i,t

)−1

(µ
(1)
i,t + (1− ρi)σ

(1)
i,t (rx, 0))− 1

1′
(
ρi,tΣ

(1,1)
i,t

)−1

1
, 0

}
(B.22)

Characteristics-based demand The baseline assumptions in B.1 about a factor struc-
ture in excess returns and return expectations and factor loadings being functions of bond
characteristics are unchanged. In addition, I assume the risky asset return is lognormally
distributed, ri,t(0) ∼ N(µi,t(0), σ

2
i,t(0)). And the covariance of the (risky) outside asset

with the assets in the demand system is a function of their characteristics:

σi,t(rx(n), 0) = yi,t(n)
′Ξi + ξi,t

The implied weights have the same form as in the baseline riskless outside asset case

(B.14), w
(1)
i,t = 1

ρi,t

(
y
(1)
i,t

′
Πi,t+πi,t1

)
, but with a broader definition of coefficients on bond

characteristics and investor-specific residuals:

Πi,t ≡
Φi −Ψi + (1− ρi,t)Ξi

γi,t
; πi,t ≡

ϕi,t − λi,t + (1− ρi,t)ξi,t − ψi,tκi,t
γi,t

.

κi,t ≡
Γ

(1)′

i,t

γi,t + Γ
(1)′

i,t Γ
(1)
i,t

(µ
(1)
i,t − λi,t1+ (1− ρi,t)σ

(1)
i,t (rx, 0))

Investor demand for bond characteristics (captured by Πi,t) now emerges not only because
characteristics are useful to predict bond returns and gain exposure to common factors,
but also because they capture the covariance of each bond with the outside asset return.
The parameter restrictions necessary to express demand as a exponential function of
bond characteristics are unchanged, and only the interpretation of coefficients β̂i is now
broader. For instance, if a given asset characteristic is associated with higher covariance
with the outside asset (Ξi > 0), the degree of risk aversion determines whether the investor
increases or decreases the portfolio weight on the respective asset. Holding more of the
correlated asset increases both portfolio returns and risk, with the latter becoming a more
prominent consideration as risk aversion increases.
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B.3 Demand elasticity derivation

Individual demand elasticity ηi,t(jk): The starting point for deriving demand elas-
ticities is the empirical expression for optimal portfolio weight of investor i (13):

wi,t(n) =
δi,t(n)

1 +
∑Ni,t

m=1 δi,t(m)

=
exp

{
αT (i)per

h
χ(i),t(n) + x1

t (n)
′β1
T (i) + x2(n)′β2

T (i) + bi(n)
′θT (i) + ζi,t + ϵi,t(n)

}
1 +

∑Ni,t

m=1 exp
{
αT (i)per

h
χ(i),t(m) + x1

t (m)′β1
T (i) + x2(n)′β2

T (i) + bi(m)′θT (i) + ζi,t + ϵi,t(m)
}

(B.23)

where δi,t(n) ≡ wi,t(n)

wi,t(0)
.

Here, I derive the semi-elasticity of this weight allocated to a given bond j with respect
to a change in the predicted excess return on bond k as the following partial derivative:

ηi,t(jk) ≡
∂ log(wi,t(j)) ∗ 100

∂perχ(i),t(k)

=


1

wi,t(j)

δi,t(j)αT (i)

(
1+

∑Ni,t
m=1 δi,t(m)

)
−δi,t(j)2αT (i)(

1+
∑Ni,t

m=1 δi,t(m)
)2 ∗ 100 if j = k,

1
wi,t(j)

−δi,t(j)δi,t(k)αT (i)(
1+

∑Ni,t
m=1 δi,t(m)

)2 ∗ 100 otherwise.

=

{
1

wi,t(j)

(
wi,t(j)αT (i) − wi,t(j)

2αT (i)
)
∗ 100 if j = k,

1
wi,t(j)

(
− wi,t(j)wi,t(k)αT (i)

)
∗ 100 otherwise.

=

{
αT (i) (1− wi,t(j)) ∗ 100 if j = k,

−αT (i) wi,t(k) ∗ 100 otherwise.

If alternatively, I adapt the elasticity definition in Koijen and Yogo (2019) and consider
the own demand elasticity:

η∗pi,t(jj) ≡ −∂ log(Qi,t(j))

∂ log(Pi,t(j))
= −

∂

[
log(Aitwi,t(j))− pi,t(j)

]
∂pi,t(j)

= −∂ log(wi,t(j))
∂ log(Pi,t(j))

+ 1

= −∂ log(wi,t(j))
∂perχ(i),t(j)

×
∂perχ(i),t(j)

∂ log(Pi,t(j))
+ 1

= −∂ log(wi,t(j))
∂perχ(i),t(j)

×
∂perχ(i),t(j)

∂(pj,t(j)− si/j,t)
+ 1

where log(Qijt) = log(Aitwijt)−pjt. The relevant bond price to investor i is that defined in
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his home currency as the ratio of the bond price in local currency j and the spot nominal
exchange rate of currency i per unit of currency j: Pi,t(j) = Pj,t(j)/Si/j,t. Equivalently,
in log terms: pi,t(j) = pj,t(j) − si/j,t. The relationship between the excess return is not
modelled explicitly in this paper but I can use the estimated relation between predicted
excess returns and the local currency yield, use the approximate relation between local-
currency bond yield yj,t(j) and price (pj,t(j) = −matt(j) × yj,t(j)

100
), and for now abstract

from joint dynamics between yields and exchange rates. This implies

∂perχ(i),t(j)

∂(pj,t(j)− si/j,t)
≈
∂perχ(i),t(j)

∂pj,t(j)

≈
∂perχ(i),t(j)

∂(−matt(j)× yj,t(j)

100
)

≈ − 100

matt(j)

∂perχ(i),t(j)

∂yj,t(j)

≈ − 100

matt(j)
Âhi

where the last line uses the estimated coefficient Âhi from the predictive bond regression (8)
as an approximation of the last partial derivative term above. Under these assumptions,
the alternative demand elasticity definition is related to the semi-elasticity discussed in
this paper as follows:

η∗pi,t(jj) ≡ −∂ log(Qi,t(j))

∂ log(Pi,t(j))
= ηi,t(jj)×

Âhi
matt(j)

+ 1 (B.24)

where matt(j) is the residual maturity of bond j at time t. It is worth considering the
case where the semi-elasticity of portfolio weights ηi,t(jj) is zero, which implies the face
value of holdings increases one-to-one with bond prices. When the price increases, funds
that keep their portfolio weight on bond j unchanged need to sell some of their holdings.

Finally, we may be interested in the related notion of the percent change in demand per
1 percentage point change in the local currency yield. This also has a simple relationship
to the other two definitions of demand elasticity:

η∗yi,t(jj) ≡
∂ log(Qi,t(j)) ∗ 100

∂yi,t(j)
=
∂ log(Qi,t(j))

∂
log(Pi,t(j))

−matt(j)

= −∂ log(Qi,t(j))

∂ log(Pi,t(j))
×matt(j)

= η∗pi,t(jj)×matt(j) = ηi,t(jj)× Âhi +matt(j) (B.25)

It is clear from (B.24) and (B.25) that these alternative elasticity definitions vary with
the maturity of bond j, while the baseline definition discussed in this paper does not.
This paper focuses on heterogeneity in investor elasticity to returns instead in order to
facilitate comparisons between the elasticities on bonds with different maturities. I report
and discuss summary statistics for the other two definitions for comparability with other
literature on asset demand curve slopes.
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Aggregate demand elasticity ηt(jk): Below I show that aggregate elasticities of the
fund sector as a whole can be calculated simply by weighing individual demand elasticities
by the total fund AUM invested in the relevant bond. Defining the aggregate share of

bond j in the fund sector’s AUM at time t as wt(j) =
∑

i AUMi,t wi,t(j)∑
i AUMi,t

and taking its partial

derivative with respect to predicted excess returns of any other bond k gives an expression
for aggregate fund sector demand elasticities:

ηt(jk) ≡
∂ log(wt(j)) ∗ 100

∂pert(k)
=
∂ log(

∑
i AUMi,t wi,t(j)∑

i AUMi,t
) ∗ 100

∂pert(k)

=
∂ log(

∑
iAUMi,t wi,t(j))

∂pert(k)
∗ 100

=
1∑

iAUMi,t wi,t(j)

∂(
∑

iAUMi,t wi,t(j))

∂pert(k)
∗ 100

=
∑
i

(
AUMi,t∑

iAUMi,t wi,t(j)

∂wi,t(j)

∂pert(k)

)
∗ 100

=
∑
i

(
AUMi,twi,t(j)∑
iAUMi,t wi,t(j)

∂ log(wi,t(j))

∂pert(k)

)
∗ 100

=

{∑
i

AUMi,twi,t(j)∑
i(AUMi,twi,t(j))

αT (i) (1− wi,t(j)) ∗ 100 if j = k,

−
∑

i
AUMi,twi,t(j)∑
i(AUMi,twi,t(j))

αT (i) wi,t(k) ∗ 100 otherwise.

This expression can also be calculated for any subset of funds of particular interest. For
instance, in some of the results I report elasticities aggregated by fund domicile, i.e. all
euro area funds versus all US funds.

C Additional estimation results

C.1 First stage: monetary policy instruments
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Table C.13: Correlation matrix between Fed and ECB monetary policy shocks

fed ff4 MP fed uspc1 MP fed us2y MP fed us5y MP fed us10y MP ecb eon3m MP ecb eonpc1 MP ecb eon2y MP ecb eon5y MP ecb eon10y MP

fed ff4 MP 1.000

fed uspc1 MP 0.930∗∗∗ 1.000

fed us2y MP 0.746∗∗∗ 0.883∗∗∗ 1.000

fed us5y MP 0.461∗∗∗ 0.671∗∗∗ 0.866∗∗∗ 1.000

fed us10y MP 0.232∗∗∗ 0.425∗∗∗ 0.609∗∗∗ 0.876∗∗∗ 1.000

ecb eon3m MP 0.079 -0.004 0.051 0.006 -0.029 1.000

ecb eonpc1 MP 0.070 -0.012 0.028 -0.009 -0.037 0.978∗∗∗ 1.000

ecb eon2y MP 0.019 -0.049 -0.047 -0.041 -0.034 0.776∗∗∗ 0.862∗∗∗ 1.000

ecb eon5y MP -0.096 -0.125 -0.122 -0.048 -0.024 0.565∗∗∗ 0.635∗∗∗ 0.880∗∗∗ 1.000

ecb eon10y MP -0.041 -0.068 -0.072 -0.019 -0.015 0.321∗∗∗ 0.395∗∗∗ 0.682∗∗∗ 0.891∗∗∗ 1.000

N 276

Note: Monthly shocks constructed as the sum of announcement days shocks if multiple announcements are made by each central bank within a month. Sample

period: 1999M1:2021M12 (unbalanced with only ECB shocks data post-2019M6). * p < 0.05, ** p < 0.01, *** p < 0.001.
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C.1.1 First stage results: baseline

Figure C.18: First stage F-statistics

(a) US dollar returns: per3$,t(n)
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(b) Euro returns: per3e,t(n)
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Note: Each bar corresponds to a single first-stage regression and the label in the x-axis indicates the

sample of bonds included in each panel regression For instance, ”JP JPY” includes all yen-denominated

bonds issued by Japanese entities (government and corporate). The blue bars show the effective F-

statistic associated with the monetary policy instruments, while the red diamonds plot the critical value

associated with 30% of the worst case bias of Olea and Pflueger (2013) and implemented through the

Stata package WEAKIVTEST by Pflueger and Wang (2013).
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Figure C.19: Estimated coefficients on Fed monetary policy shock

(a) US dollar returns: per3$,t(n)
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(b) Euro returns: per3e,t(n)
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cient on the Fed monetary policy instrument and the red ranges plot 95% confidence bands.
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Figure C.20: Estimated coefficients on ECB monetary policy shock

(a) US dollar returns: per3$,t(n)
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(b) Euro returns: per3e,t(n)
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cient on the ECB monetary policy instrument and the red ranges plot 95% confidence bands.
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C.1.2 First stage results: robustness

Figure C.21: First stage F-statistics: 12-month returns

(a) US dollar returns: per12$,t(n)
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(b) Euro returns: per12e,t(n)
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Note: Each bar corresponds to a single first-stage regression and the label in the x-axis indicates the

sample of bonds included in each panel regression For instance, ”JP JPY” includes all yen-denominated

bonds issued by Japanese entities (government and corporate). The blue bars show the effective F-

statistic associated with the monetary policy instruments, while the red diamonds plot the critical value

associated with 30% of the worst case bias of Olea and Pflueger (2013) and implemented through the

Stata package WEAKIVTEST by Pflueger and Wang (2013).
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Figure C.22: Estimated coefficients on Fed monetary policy shock: 12-
month returns

(a) US dollar returns: per12$,t(n)
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Figure C.23: Estimated coefficients on ECB monetary policy shock: 12-
month returns

(a) US dollar returns: per12$,t(n)
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Figure C.24: First stage F-statistics, controlling for EBP

(a) US dollar returns: per3$,t(n)
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Figure C.25: Estimated coefficients on Fed monetary policy shock, con-
trolling for EBP

(a) US dollar returns: per3$,t(n)
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Note: Each bar corresponds to a single first-stage regression and the label in the x-axis indicates the

sample of bonds included in each panel regression. For instance, ”JP JPY” includes all yen-denominated

bonds issued by Japanese entities (government and corporate). The blue bars show the estimated coeffi-

cient on the Fed monetary policy instrument and the red ranges plot 95% confidence bands.
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Figure C.26: Estimated coefficients on ECB monetary policy shock, con-
trolling for EBP

(a) US dollar returns: per3$,t(n)
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Note: Each bar corresponds to a single first-stage regression and the label in the x-axis indicates the

sample of bonds included in each panel regression. For instance, ”JP JPY” includes all yen-denominated

bonds issued by Japanese entities (government and corporate). The blue bars show the estimated coeffi-

cient on the ECB monetary policy instrument and the red ranges plot 95% confidence bands.
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C.2 Second stage: bond demand panel Logits

Table C.14: Panel Logit models by fund type

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
US fixed inc.: Passive Active EA fixed inc.: Passive Active US balanced: Passive Active EA balanced: Passive Active

per3i,t 3.3517∗∗∗ 2.0661∗ 3.8106∗∗∗ 1.7823∗∗∗ 0.5537 1.6549∗∗∗ 2.0080 1.2114 2.5316∗∗ 1.0679∗ 1.4376 0.6656

(0.8911) (1.2166) (0.8799) (0.4221) (0.6108) (0.4829) (1.2432) (1.5947) (1.1180) (0.5918) (1.0042) (0.5906)

Maturity -0.0089∗∗ -0.0073 -0.0078 -0.0022 -0.0005 -0.0019 -0.0065 -0.0037 -0.0084∗ -0.0081∗∗∗ -0.0104∗∗∗ -0.0062∗∗

(0.0045) (0.0051) (0.0052) (0.0016) (0.0022) (0.0019) (0.0049) (0.0059) (0.0046) (0.0026) (0.0036) (0.0026)

AAA-AA=1 0.2587∗∗ 0.6261∗∗∗ -0.0054 0.1181∗ 0.2677∗∗∗ 0.0236 0.2130 0.3670∗∗ 0.0044 0.2997∗∗∗ 0.4977∗∗∗ 0.2278∗∗∗

(0.1116) (0.1583) (0.1323) (0.0626) (0.0870) (0.0801) (0.1348) (0.1651) (0.1448) (0.0852) (0.1424) (0.0863)

A=1 0.2390∗∗ 0.6335∗∗∗ 0.0325 0.0390 0.1681∗∗ 0.0013 0.3286∗∗ 0.5546∗∗∗ 0.0686 0.1299 0.3473∗∗∗ 0.0574
(0.1006) (0.1641) (0.1198) (0.0579) (0.0803) (0.0760) (0.1290) (0.1550) (0.1366) (0.0793) (0.1301) (0.0815)

BBB=1 0.2247∗ 0.5949∗∗∗ 0.0846 0.0545 0.1820∗∗ 0.0273 0.2735∗ 0.5038∗∗∗ 0.0681 0.1311∗ 0.3297∗∗∗ 0.0710
(0.1152) (0.1717) (0.1297) (0.0544) (0.0758) (0.0714) (0.1427) (0.1679) (0.1485) (0.0723) (0.1231) (0.0734)

BB=1 0.1191 0.2917∗∗ 0.0906 0.0260 -0.0043 0.0435 0.1458 0.2543∗∗∗ 0.0839 0.0731 0.2008∗ 0.0327
(0.0889) (0.1308) (0.1330) (0.0552) (0.0666) (0.0762) (0.0953) (0.0949) (0.1359) (0.0653) (0.1046) (0.0627)

Amt. Outstanding 0.3774∗∗∗ 0.4646∗∗∗ 0.3293∗∗∗ 0.3063∗∗∗ 0.3776∗∗∗ 0.2613∗∗∗ 0.4384∗∗∗ 0.4876∗∗∗ 0.3468∗∗∗ 0.2518∗∗∗ 0.3187∗∗∗ 0.2239∗∗∗

(0.0236) (0.0294) (0.0262) (0.0091) (0.0142) (0.0103) (0.0293) (0.0306) (0.0321) (0.0119) (0.0180) (0.0135)

Bond Seniority -0.0172 -0.0057 -0.0063 -0.0063 -0.0063 -0.0022 0.0126 0.0472 0.0029 -0.0181∗ -0.0267∗ -0.0155
(0.0141) (0.0174) (0.0148) (0.0066) (0.0101) (0.0064) (0.0215) (0.0328) (0.0164) (0.0098) (0.0148) (0.0102)

Home Bond 0.0000 0.0000 0.0000 0.0651∗∗∗ 0.0689∗∗ 0.0730∗∗∗ 0.0000 0.0000 0.0000 -0.0021 -0.0220 0.0618
(.) (.) (.) (0.0235) (0.0298) (0.0270) (.) (.) (.) (0.0401) (0.0471) (0.0482)

Bond in Fund Investment Area 0.3224∗∗∗ 0.1459∗ 0.3249∗∗∗ 0.2373∗∗∗ 0.1472∗∗∗ 0.2658∗∗∗ 0.1569 0.0134 0.3437∗∗ 0.1301∗∗ 0.0947∗ 0.1442
(0.0612) (0.0820) (0.0595) (0.0343) (0.0359) (0.0401) (0.1203) (0.1481) (0.1400) (0.0632) (0.0504) (0.1020)

Govt Bond=1 X Govt Fund=1 0.6442∗∗∗ 0.5432∗∗∗ 0.6678∗∗∗ 0.6976∗∗∗ 0.6342∗∗∗ 0.6875∗∗∗ 1.3049∗∗∗ 1.2810∗∗∗ 0.9791∗∗∗ 0.9272∗∗∗ 0.8639∗∗∗ 0.9585∗∗∗

(0.0854) (0.1309) (0.1067) (0.0420) (0.0564) (0.0536) (0.1462) (0.1882) (0.2972) (0.0838) (0.1062) (0.1083)

Govt Bond=1 X Mixed Fund=1 0.2150∗∗∗ 0.2198∗∗∗ 0.1904∗∗∗ 0.2927∗∗∗ 0.3476∗∗∗ 0.1992∗∗∗ 0.3460∗∗∗ 0.3750∗∗∗ 0.2319∗∗∗ 0.3428∗∗∗ 0.3930∗∗∗ 0.3205∗∗∗

(0.0651) (0.0730) (0.0610) (0.0296) (0.0367) (0.0306) (0.0685) (0.0833) (0.0672) (0.0327) (0.0453) (0.0337)

Corp Bond=1 X Corp Fund=1 0.3062∗∗∗ -0.1492 0.3671∗∗∗ 0.2150∗∗∗ 0.0384 0.2552∗∗∗ -0.1101 -0.4955∗∗∗ 0.1354 0.0804 -0.2476∗∗∗ 0.1435∗

(0.1138) (0.1078) (0.0939) (0.0394) (0.0455) (0.0374) (0.1384) (0.1257) (0.1289) (0.0686) (0.0557) (0.0757)
Obs 1,933,880 807,205 1,098,618 3,204,199 1,239,624 1,929,587 533,547 326,818 197,813 1,020,864 328,895 686,874
DoF 1,933,701 807,038 1,098,444 3,204,005 1,239,447 1,929,394 533,389 326,670 197,659 1,020,689 328,738 686,699
Adj. Rsq.–Within 0.16 0.26 0.11 0.17 0.28 0.12 0.22 0.27 0.14 0.15 0.24 0.12
Adj. Rsq. 0.82 0.89 0.71 0.91 0.94 0.88 0.81 0.85 0.72 0.80 0.84 0.78
Fund X Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bond country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bond currency FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note: Each column corresponds to a separate panel regression for a subset of funds: (1) all US fixed income funds, (2) passive US fixed income funds, (3) active US fixed income funds, etc. The dependent variable

is the log ratio of bond bucket portfolio weight over the outside asset weight log
(
wi,t(n)/wi,t(0)

)
. per12i,t is the fitted value for the 12-month-horizon predicted excess return (using only information as of time t) on

bond buckets in terms of investor i’s currency from the first-stage instrumental variables regressions. Exogenous explanatory variables include bucket face-value-weighted average bond residial maturity (Maturity), broad

credit rating dummies (AAA-AA, A, BBB, BB), total amount outstanding of bonds in bucket converted into fund currency ($ or e) at exchange rates lagged by one year (Amt. Outstanding), Corporate Bond dummy,

Bond Seniority rank raging from 1 (Senior Secured) to 9 (Junior Subordinated Unsecured), a Home Bond dummy which equals one if the bond country of risk and the fund domicile country coincide (fund domicile only

varies within EA funds), and a Bond in Fund Investment Area dummy which equals one if the bond country of risk coincides with the fund investment area as reported to Morningstar. In addition, all panel regressions

include fund-time, bond country and bond currency fixed effects. Standard errors (in parentheses) clustered at fund and bucket level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure C.27: Estimates of αT (i): compare fund splits

(a) Baseline: Above / Below Median Ac-
tive Share, per3i,t(n)
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Figure C.28: Estimates of αT (i) by both Active Share and AUM
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(b) Small/Large × Active/Passive,
per12i,t(n)

-5
0

5
10

-5
0

5
10

-2
0

2
4

-2
0

2
4

6

US fixed income US balanced

EA fixed income EA balanced

All Small Small Passive
Small Active Large Large Passive
Large Active

C.3 Demand elasticity estimates

Table C.15: Summary statistics for estimated own bond elasticities of individual funds
ηi,t(jj), by four broad fund type

Fund Type Mean S.D. Median 1st %ile 99th %ile Obs.
US fixed income 304.05 85.95 373.58 183.48 381.03 2,446,056
EA fixed income 121.26 53.29 162.64 48.52 165.48 4,471,108
US balanced 171.66 64.14 121.13 114.60 253.15 629,621
EA balanced 89.69 35.29 66.49 62.09 143.75 1,396,971
Total 169.87 105.04 163.94 51.14 380.96 8,943,756

Note: Individual elasticities ηi,t(jj) for broad fund types. Each summary statistic is calculated across three dimensions:

funds of each type (i), bonds held by these funds (j) and quarters with holdings data (t).

Table C.16: Summary statistics for own bond elasticities of aggregate fund sector, w.r.t.
yield: ∂ log(Qt(n))∗100

∂yt(n)

Fund Type Mean S.D. Median 1st %ile 99th %ile Obs.
US fixed income 729.04 148.13 778.89 476.16 897.02 75,938
EA fixed income 312.96 73.86 337.65 126.85 396.84 105,945
US balanced 470.27 121.71 513.26 280.47 608.53 43,041
EA balanced 186.65 47.96 165.08 149.67 337.36 77,109
Total Fund Sector 422.03 175.81 381.59 129.09 880.53 110,529

Note: Elasticities
∂ log(Qt(j))∗100

∂yt(j)
aggregated for the entire fund sector or by four broad fund types. Each summary

statistic is calculated across two dimensions: bonds (j) and quarters with holdings data (t).
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D Additional elasticities

D.1 Safety and low demand elasticity

Figure D.29: Average (over time) own elasticities η̄(jj) by bond characteristics – Cor-
porate bonds
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Figure D.30: Average (over time) own elasticities η̄(jj) by bond characteristics – All
bonds
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Figure D.31: Average (over time) own elasticities η̄(jj) by bond currency – Sovereign
bonds

(a) All funds
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D.2 Global and regional safe assets: a bond substitution view

Figure D.32: Substitution elasticities η̄(jk) from US sovereign bonds with maturity of
less than 1 year by bond characteristics – US funds
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Note: Aggregate demand elasticities, averaged over time for each bucket. Bars report the median of these bucket-specific
time-average elasticities by each bond characteristic.
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Figure D.33: Substitution elasticities η̄(jk) from US sovereign bonds with maturity of
less than 1 year by bond characteristics – EA funds
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Note: Aggregate demand elasticities, averaged over time for each bucket. Bars report the median of these bucket-specific
time-average elasticities by each bond characteristic.
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Figure D.34: Substitution elasticities η̄(jk) from German sovereign bonds with maturity
of less than 1 year by bond characteristics – US funds
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Note: Aggregate demand elasticities, averaged over time for each bucket. Bars report the median of these bucket-specific
time-average elasticities by each bond characteristic.
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Figure D.35: Substitution elasticities η̄(jk) from German sovereign bonds with maturity
of less than 1 year by bond characteristics – EA funds
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Note: Aggregate demand elasticities, averaged over time for each bucket. Bars report the median of these bucket-specific
time-average elasticities by each bond characteristic.
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Figure D.36: Average (over time) substitution elasticities η̄(jk) from US sovereign bonds
of 1-5 year maturity by bond characteristics
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Figure D.37: Average (over time) substitution elasticities η̄(jk) from US sovereign bonds
of 5-10 year maturity by bond characteristics
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Figure D.38: Average (over time) substitution elasticities η̄(jk) from US sovereign bonds
of over 10-year maturity by bond characteristics
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Figure D.39: Average (over time) substitution elasticities η̄(jk) from German sovereign
bonds of 1-5 year maturity by bond characteristics
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Figure D.40: Average (over time) substitution elasticities η̄(jk) from German sovereign
bonds of 5-10 year maturity by bond characteristics
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Figure D.41: Average (over time) substitution elasticities η̄(jk) from German sovereign
bonds of over 10-year maturity by bond characteristics
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D.3 Flight to safety

Table D.17: Correlations between German sovereign bond elasticities and risk measures

DE sov <1y DE sov 1-5y DE sov 5-10y DE sov >10y
Elasticities
DE sov <1y 1.000
DE sov 1-5y 0.181 1.000
DE sov 5-10y 0.178 0.601∗∗∗ 1.000
DE sov >10y 0.355∗∗∗ 0.346∗∗∗ 0.514∗∗∗ 1.000
Risk
VIX 0.152 0.200 0.206 0.366∗∗∗

BEX risk aversion 0.117 0.141 0.151 0.316∗∗

BHL risk aversion 0.161 0.185 0.196 0.354∗∗∗

MOVE 0.383∗∗∗ 0.088 0.289∗∗ 0.520∗∗∗

EBP 0.050 0.168 0.174 0.414∗∗∗

CISSEAbond 0.149 0.168 0.333∗∗ 0.330∗∗

Table D.18: Correlations between Swiss sovereign bond elasticities and risk measures

CH sov <1y CH sov 1-5y CH sov 5-10y CH sov >10y
Elasticities
CH sov <1y 1.000
CH sov 1-5y -0.035 1.000
CH sov 5-10y 0.280∗ 0.306∗∗ 1.000
CH sov >10y -0.521∗∗∗ 0.638∗∗∗ 0.274∗∗ 1.000
Risk
VIX -0.076 -0.100 -0.302∗∗ -0.394∗∗∗

BEX risk aversion 0.101 -0.080 -0.248∗ -0.402∗∗∗

BHL risk aversion -0.086 -0.100 -0.323∗∗ -0.383∗∗∗

MOVE 0.331∗∗ -0.457∗∗∗ -0.194 -0.723∗∗∗

EBP -0.033 -0.142 -0.032 -0.443∗∗∗

CISSEAbond 0.210 -0.187 -0.090 -0.433∗∗∗
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Table D.19: Correlations between Japanese sovereign bond elasticities and risk measures

JP sov <1y JP sov 1-5y JP sov 5-10y JP sov >10y
Elasticities
JP sov <1y 1.000
JP sov 1-5y -0.466∗∗∗ 1.000
JP sov 5-10y -0.352∗∗∗ 0.626∗∗∗ 1.000
JP sov >10y -0.173 0.617∗∗∗ 0.400∗∗∗ 1.000
Risk
VIX -0.286∗∗ 0.378∗∗∗ 0.191 0.079
BEX risk aversion -0.338∗∗ 0.398∗∗∗ 0.216 0.029
BHL risk aversion -0.324∗∗ 0.379∗∗∗ 0.215 0.080
MOVE -0.398∗∗∗ 0.699∗∗∗ 0.289∗∗ 0.303∗∗

EBP -0.265∗∗ 0.398∗∗∗ 0.042 0.116
CISSEAbond -0.142 0.424∗∗∗ 0.238∗ -0.013

Figure D.42: Own demand elasticities ηt(jj) of US sovereign bonds

10
0

15
0

20
0

25
0

el
as

tic
ity

  ∂
lo

g 
w

t(j
)*

10
0 

/ ∂
pe

r t(
j)

2007q1 2010q3 2014q1 2017q3 2021q1
 

USsov_USD_AAA-AA_under1y USsov_USD_AAA-AA_1-5y
USsov_USD_AAA-AA_5-10y USsov_USD_AAA-AA_over10y
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Figure D.43: Substitutability of US corporate bonds (BBB-BB) with US Treasuries of
the same maturity

(a) US corporate BBB <1y bonds
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(b) US corporate BBB 1-5y bonds
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(c) US corporate BBB 5-10y bonds
50

10
0

15
0

20
0

M
O

VE

-1
4.

00
-1

2.
00

-1
0.

00
-8

.0
0

-6
.0

0
-4

.0
0

El
as

tic
ity

  ∂
lo

g 
(w

t(j
)) 

*1
00

 / 
∂p

er
t(k

)

2007q1 2010q3 2014q1 2017q3 2021q1
 

X-Elasticity - All funds MOVE

(d) US corporate BBB >10y bonds
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Figure D.44: Substitutability of German and Belgian sovereign bonds
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Black line: Substitution elasticity of Belgian sovereign bonds w.r.t. 1ppt change in predicted excess returns on German
sovereign bonds. Median of substitutions within all four maturity buckets (under 1y, 1-5y, 5-10y, over 10y).

Figure D.45: Substitutability of German and Dutch sovereign bonds
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Black line: Substitution elasticity of Dutch sovereign bonds w.r.t. 1ppt change in predicted excess returns on German
sovereign bonds. Median of substitutions within all four maturity buckets (under 1y, 1-5y, 5-10y, over 10y).
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Figure D.46: Substitutability of German and Italian sovereign bonds
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Black line: Substitution elasticity of Italian sovereign bonds w.r.t. 1ppt change in predicted excess returns on German
sovereign bonds. Median of substitutions within all four maturity buckets (under 1y, 1-5y, 5-10y, over 10y).
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