



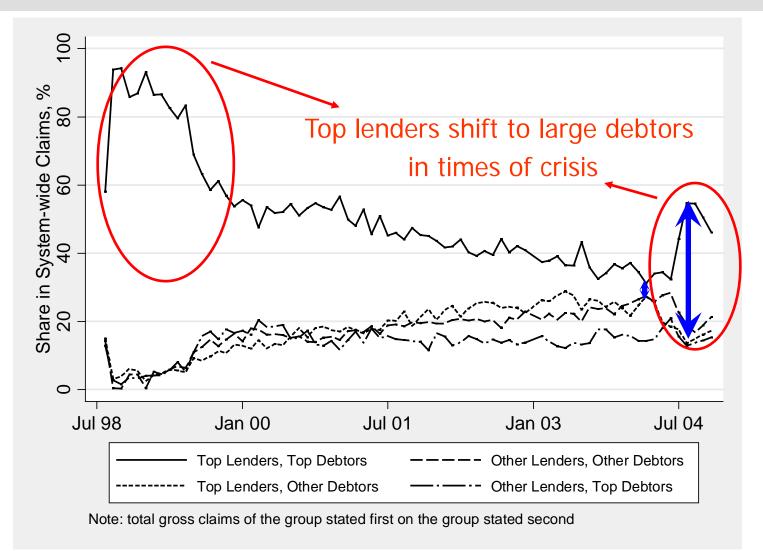
#### Bank networks, interbank liquidity runs and the identification of banks that are Too Interconnected to Fail

Alexei Karas Koen Schoors

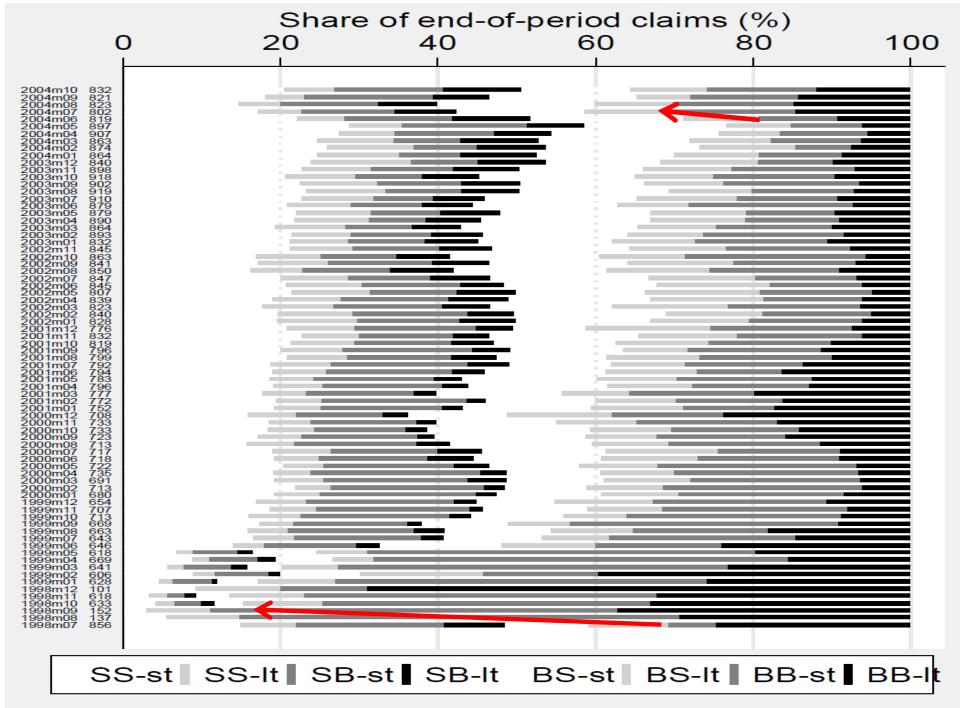
# What do we do?

#### Basic idea of the paper

- 1. Identify the scenarios that are sufficient to simulate real interbank market crises
- 2. Use this methodology to calculate the potential contribution of bank<sub>i,t</sub> to contagion in period t.
- 3. Identify the systemically important banks (SIFI or superspreaders) using only data on the position of the bank in the network, as opposed to size.


# **Basic findings**

- Capital contagion, funding liquidity losses from infected banks and haircuts are not sufficient
- We need liquidity hoarding to reliably simulated real banking crises (preferential detachment)
- The superspreaders (SIFI) are best identified by their position in the network (K-shell index)
- This is NOT the same as size
- Incomplete network data already does a good job


# We use Russian data as a training dataset

- 75 months of complete bilateral contract data (98-04)
  - Identity of both parties
  - Contract types
  - Volumes
  - Maturities
  - Prices
- Monthly bank balances and P&L (Interfax, Mobile)
  - Capital, liquidity, reserves, securities
- Two real but very different interbank market crises
  - The infamous 1998 default
  - The 2004 panic that was only stopped by deposit insurance
- An almost experimental setting

# Flight to quality in crisis time



Frankfurt, ECB, October 2012 Alexei Karas and Koen Schoors



# Interbank market contagion

#### Scenario 1

- Credit losses deplete a bank's capital
- Default on interbank obligations
- Potential domino effects via credit losses of other banks
- Contagion propagates until it stops

# Scenario 2

- We add funding liquidity losses
- The borrowers of the initial failing bank lose funding that can only partially be replaced
- If the loss >liquid assets, we get haircuts on fire sales
- More banks fail in the further rounds

# Interbank market contagion

#### Scenario 3

- If a bank severely hit by scenario 1/2, it may face a run on total interbank obligations by uninfected banks as in Rochet and Vives (2004).
- Preferential detachment from banks that are hit but still solvent and liquid
- The network structure itself changes endogenously
- This does the trick
- Scenario 4
  - Panic and complete liquidity hoarding
  - All banks run on each other regardless fundamentals

# The early literature

- Early theoretical literature was based on capital channel
  - Allen and Gale (2000)
- Early empirical literature was based on the capital channel
  - Sheldon and Maurer (1998) for Switzerland,
  - Furfine (2003) for the U.S.,
  - Upper and Worms (2004) for Germany,
  - Lelyveld and Liedorp (2006) for the Netherlands,
  - Degryse and Nguyen (2007) for Belgium

# New channels

- Fire sales, haircuts and asset prices
  - Eisenberg and Noe, 2001
  - Cifuentes et al. (2005), Shin (2008)
- Liquidity hoarding and rund
  - Rochet and Vives (2004): large well-informed investors don't renew interbank credit if a large adverse shock to one bank creates uncertainty about other banks
  - Also Müller, 2006
- Overview of possible channels in Upper (2001)
- Recent theoretical contributions of Gai, Haldane and Kapadia (2010, 2011)

# **Bilateral simulations**

- Krause and Giansante (2011)
  - Generate theoretical networks and attack them
  - Draw conclusions about contagion

#### Our approach

- Start from real endogenously formed network
- Attack it allowing increasingly more damaging channels
- Random attack (we also did correlated attacks)
- Till you reproduce the real crises
- Then use the scenario to calculate the SIFI banks (those with largest contributions to contagion)
- And identify them with more limited information

#### Formal bank balance sheet

Panel A. Simplified bank balance sheet identity

$$r_i + \sum_{j=1}^n y_{ij}^{st} + \sum_{j=1}^n y_{ij}^{lt} + s_i + a_i = c_i + \sum_{j=1}^n y_{ji}^{st} + \sum_{j=1}^n y_{ji}^{lt} + l_i$$

#### Formal condition set (solvency, liquidity, Infection)

Panel B. Conditions for being insolvent (S), illiquid (L) and infected (I)

Irreplacable funding liquidity loss Remaining liquid assets S1  $c_i < \lambda \sum_{j=1}^n \theta_j y_{ij}$  $S1 = c_i < \lambda \sum_{j=1}^{n} \theta_j y_{ij} + \max \left\{ 0, \delta \left[ \rho \sum_{j=1}^{n} \theta_j (y_{ji}^{st} + y_{ji}^{lt}) - r_i - \sum_{j=1}^{n} (1 - \theta_j) (y_{ij}^{st} + y_{ij}^{lt}) \right] \right\}$   $S3 = c_i < \lambda \sum_{j=1}^{n} \theta_j y_{ij} + \max \left\{ 0, \delta \left[ \sum_{j=1}^{n} (y_{ji}^{st} + y_{ji}^{lt}) - r_i - \sum_{j=1}^{n} (1 - \theta_j) (y_{ij}^{st} + y_{ij}^{lt}) \right] \right\}$  $L1 \quad r_i + \sum_{j=1}^n (1 - \theta_j) (y_{ij}^{st} + y_{ij}^{lt}) + (1 - \frac{\delta}{1 + \delta}) s_i < \rho \sum_{j=1}^n \theta_j (y_{ji}^{st} + y_{ji}^{lt})$  $L2 \underbrace{r_i + \sum_{j=1}^n (1 - \theta_j)(y_{ij}^{st} + y_{ij}^{lt})}_{I1 \quad 0 < \lambda \sum_{j=1}^n \theta_j y_{ij}} \underbrace{+ (1 - \frac{\delta}{1+\delta})s_i}_{Market value securities after haircut}$  $0 < \rho \sum_{i=1}^{n} \theta_i (y_{ii}^{st} + y_{ii}^{lt})$ I2 $\max\left[0, (1-\mu)c_{i}\right] < \lambda \sum_{j=1}^{n} \theta_{j} y_{ij} + \max\left\{0, \delta\left[\rho \sum_{j=1}^{n} \theta_{j} (y_{ji}^{st} + y_{ji}^{lt}) - r_{i} - \sum_{j=1}^{n} (1-\theta_{j})(y_{ij}^{st} + y_{ij}^{lt})\right\}\right\}$ I3 $I4 \quad (1-\mu)r_i < \rho \sum_{j=1}^n \theta_j (y_{ji}^{st} + y_{ji}^{lt})$ where:  $\theta_j = 1$  if bank j has defaulted, and 0 otherwise  $\lambda$  - loss given default (LGD) on interbank assets  $\rho$  - fraction of lost funding from failed banks that cannot be replaced  $\delta$  - fire sale asset haircut: selling assets worth  $(1 + \delta)$  a bank takes a loss of  $\delta$  $(1-\mu)$  - fraction of capital  $c_i$  / reserves  $r_i$  needed to be destroyed to trigger a run

#### Scenario's

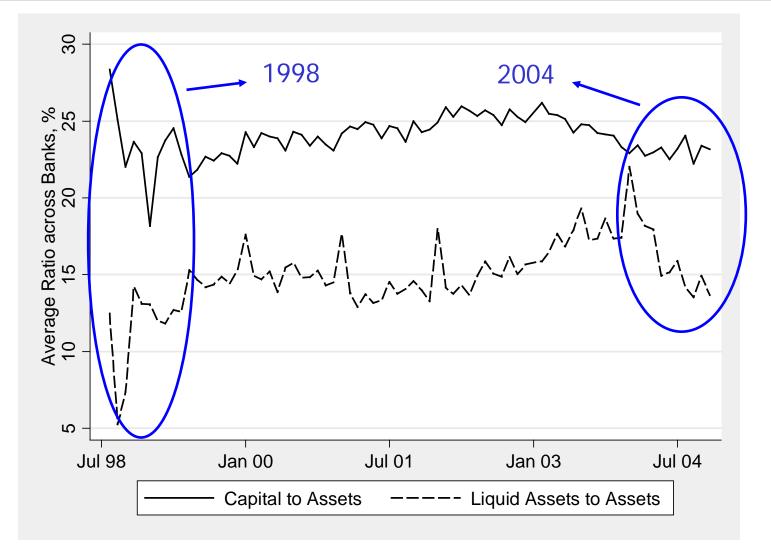
Panel C. Default rules for different contagion scenarios

Contagion scenario 1a: credit loss 2a: credit + funding loss 3a: credit + funding loss + run on infected 4a: credit + funding loss + run on all 2s, 3s, 4s:

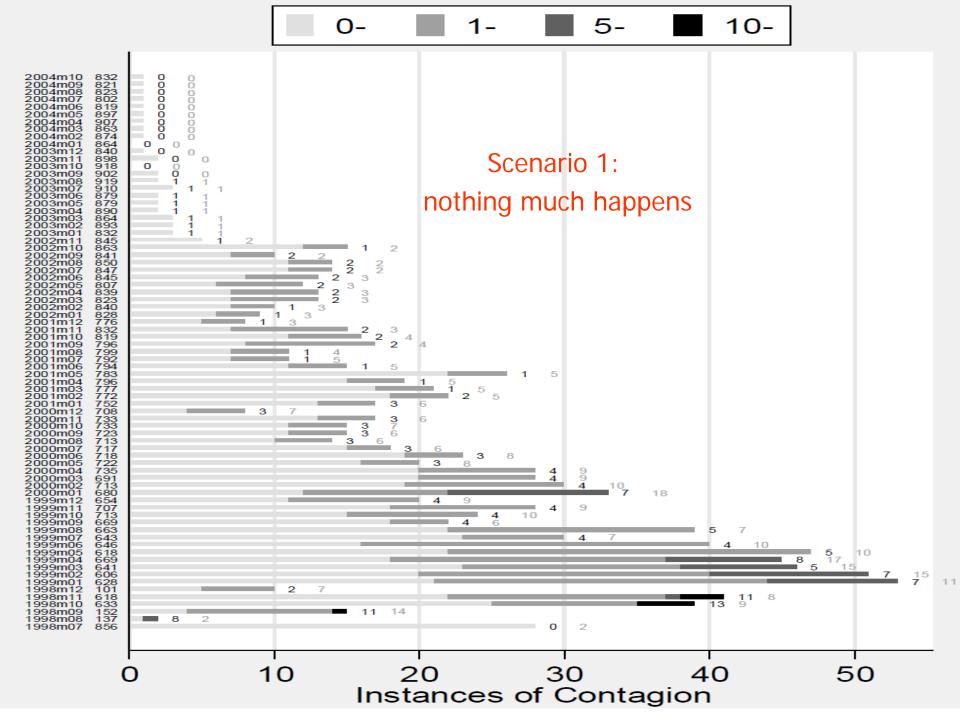
 $\begin{array}{l} \mbox{Default rule} \\ S1 \& I1 \\ (S2 \ or \ L1) \& \ (I1 \ or \ I2) \\ \{(S2 \ or \ L1) \& \ (I1 \ or \ I2)\} \ or \ \{(S3 \ or \ L2) \& \ (I3 \ or \ I4)\} \\ S3 \ or \ L2 \\ \mbox{same as } 2a, \ 3a, \ 4a \ but \ all \ y^{lt} = 0 \end{array}$ 

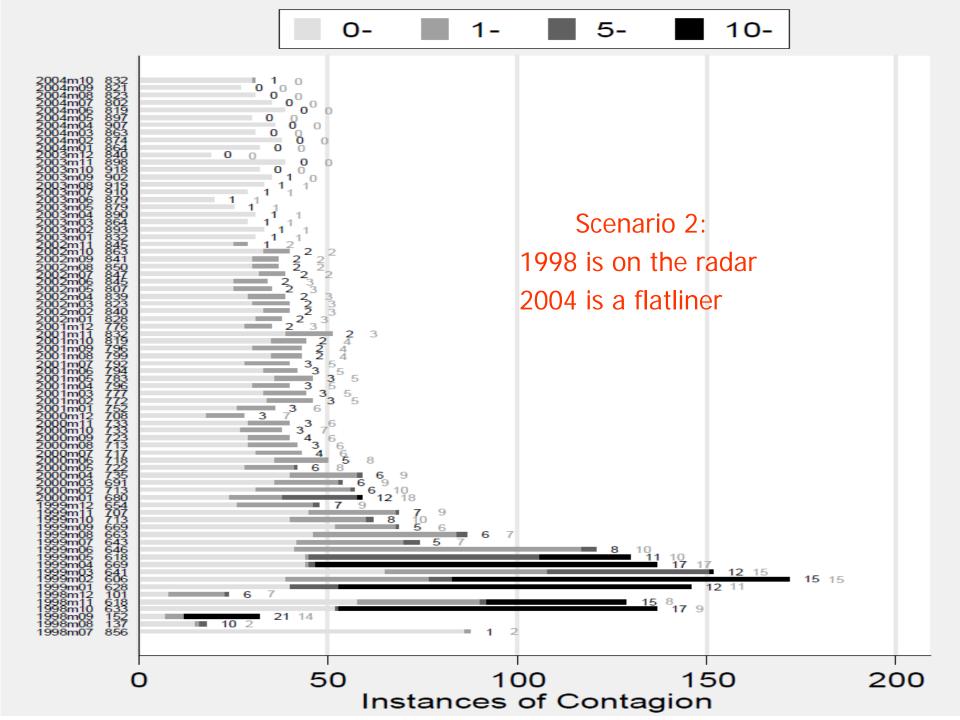
6

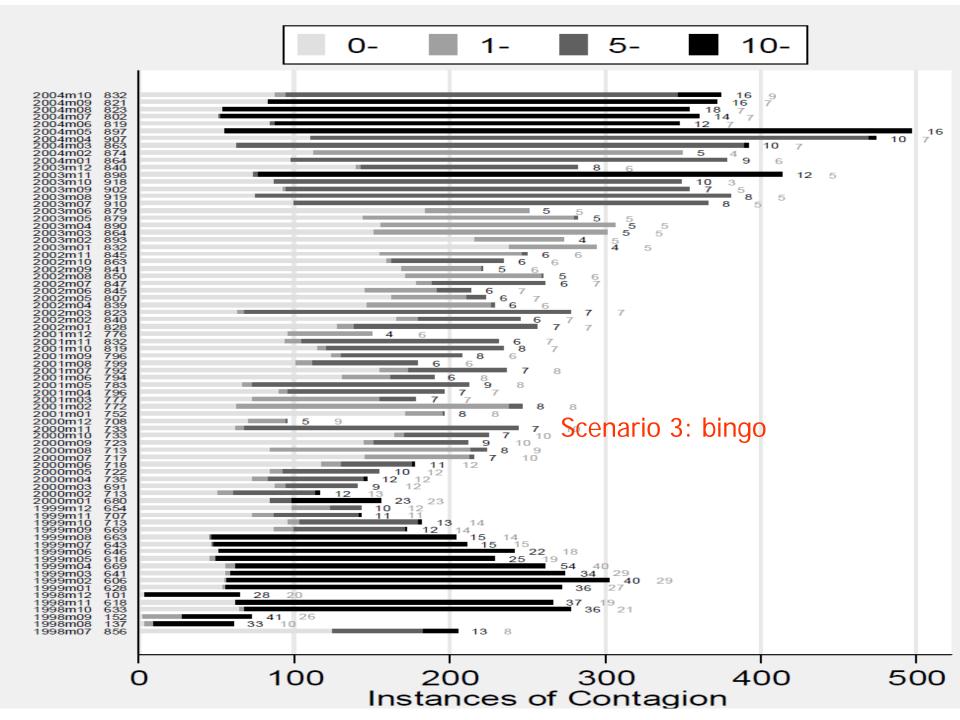
# On haircuts


#### Why not endogenous?

- We could increase the haircut in function of results of previous rounds (spirit of Eisenberg and Noe; Müller)
- But this would only reinforce results


#### Why not after liquidity hoarding?


- We could also change the order,
- but the scenario with hoarding, but no haircut yet, would suffice to get contagion
- Haircut would then drop from the simulation scenario
- More important in more developed markets?


#### Financial crises and bank health Capital versus liquidity



Frankfurt, ECB, October 2012 Alexei Karas and Koen Schoors







# Intermediate conclusion

- The capital channel does not suffice
  - The 1998 crisis is somewhat predicted by it
  - The 2004 crisis is off the screen
- Funding liquidity and asset sales don't do it either
  - 1998 is now really on the screen
  - 2004 is still flat
- Scenario 3 captures both crisis periods
  - Liquidity runs and preferential detachment are essential
  - We will use this scenario to calculate individual banks' contributions to contagion in a second step

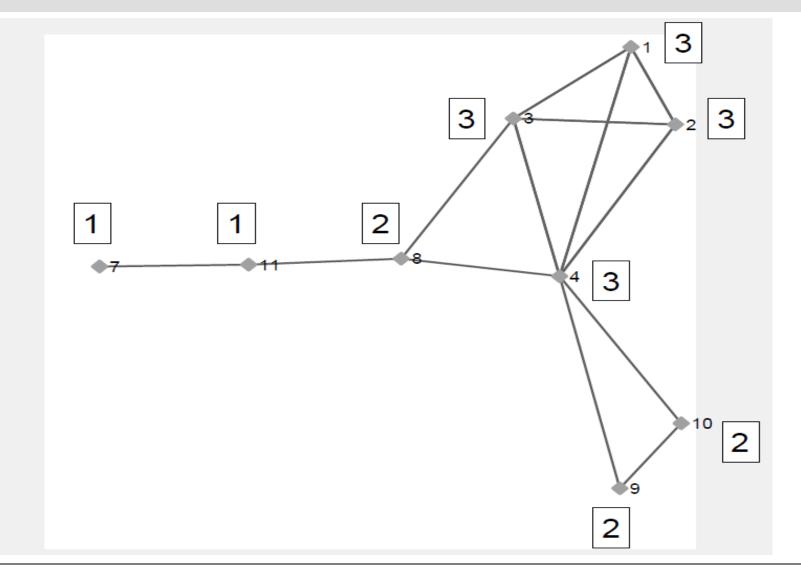
# Identifying the spreaders of contagion

- We have identified by simulation the banks that contribute most to contagion
- The question: can we identify the "SIFI" by
  - Looking at the structure of the network
  - And at the position of banks in the network
- Conventional wisdom
  - Degree, centrality indices, betweenness
- Our contribution
  - K-core centrality

Last step:

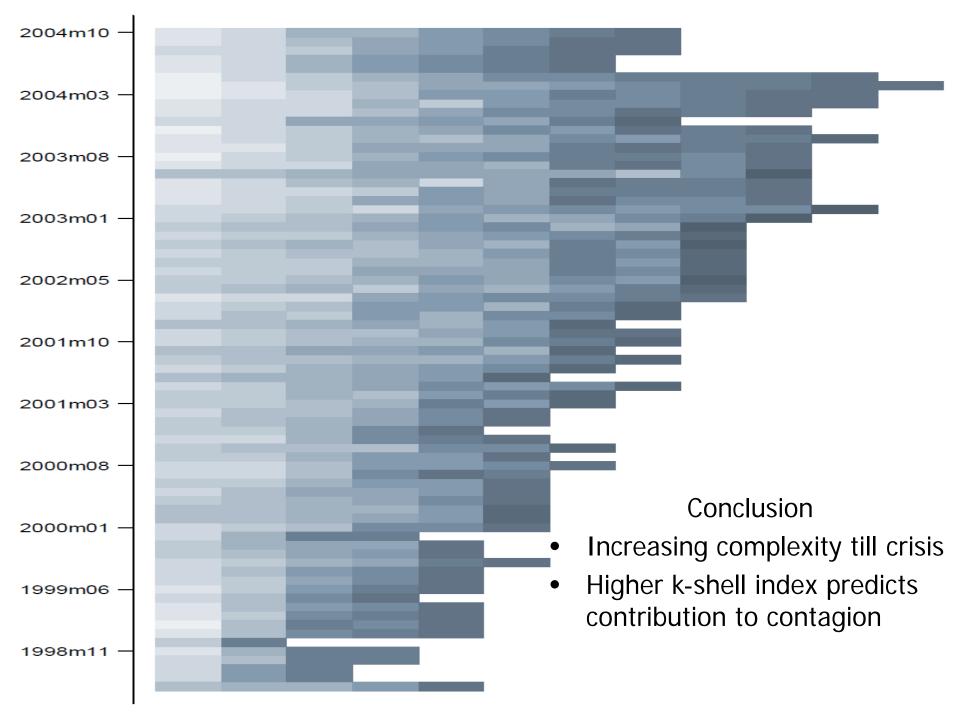
#### Table 2: Centrality Indices

| Index                     | Formula                                                                         | Description                                                                           |  |  |
|---------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Valued<br>Outdegree       | $0 \leq VO_i = rac{\sum_{j=1}^n y_{ij}}{	ext{System-wide Assets}} \leq 1$      | bank share in system-wide<br>interbank assets                                         |  |  |
| Valued<br>Indegree        | $0 \leq VI_i = rac{\sum_{j=1}^n y_{ji}}{	ext{System-wide Liabilities}} \leq 1$ | bank share in system-wide<br>interbank liabilities                                    |  |  |
| Non-valued<br>Outdegree   | $0 \leq NO_i = \frac{\sum_{j=1}^n (y_{ij} > 0)}{n-1} \leq 1$                    | % of market participants a bank has<br>as counterparties on its asset side            |  |  |
| Non-valued<br>Indegree    | $0 \le NI_i = \frac{\sum_{j=1}^n (y_{ji} > 0)}{n-1} \le 1$                      | % of market participants a bank has<br>as counterparties on its liability side        |  |  |
| Betweenness<br>Centrality | see Miura (2011) whose Stata<br>Graph Library we use                            | % of shortest paths linking institutions other than bank $i$ passing through bank $i$ |  |  |
| where                     | $y_{ij}-$ gross claims of bank $i$ on bank $j$                                  |                                                                                       |  |  |


 $(y_{ij} > 0)$  evaluates to 1 if bank *i* has claims on bank *j*; and 0 otherwise (n-1)- max number of links a bank can have

i

# Concepts from econophysics


- Conventional wisdom
  - Centrality of a node in a network predicts the node's potential to spread contagion
- Kitsak et al.
  - Challenge this view for a variety of networks
  - Shows that the K-shell index (result from K-core decomposition) beats any traditional network variable
  - We introduce this concept to the banking literature
  - The measure is unweighted and undirected

## K-core decomposition analysis



Frankfurt, ECB, October 2012 Alexei Kara

Alexei Karas and Koen Schoors



#### $C_{it} = \alpha + \beta' Bank_{it} + \lambda_t + \varepsilon_{it}$

Table 3: Identifying Influential Spreaders

|                         | C = Share of failed banks |          |                     | C = Share of failed assets |              |              |  |
|-------------------------|---------------------------|----------|---------------------|----------------------------|--------------|--------------|--|
| VARIABLES               | (1)                       | (2)      | (3)                 | (4)                        | (5)          | (6)          |  |
|                         | بادياديار فرقر م          |          | a <b>h</b> a shakak |                            |              |              |  |
| NI                      | 1.11***                   |          | -0.71***            | 2.88***                    |              | -2.00***     |  |
|                         | (8.6)                     |          | (-5.6)              | (7.7)                      |              | (-5.4)       |  |
| NO                      | $2.32^{***}$              |          | $0.17^{*}$          | $5.55^{***}$               |              | -0.22        |  |
|                         | (11.2)                    |          | (1.9)               | (9.9)                      |              | (-1.0)       |  |
| VI                      | $0.38^{**}$               |          | $0.30^{***}$        | $1.15^{**}$                |              | $0.93^{***}$ |  |
|                         | (2.6)                     |          | (3.0)               | (2.5)                      |              | (2.9)        |  |
| VO                      | 0.09                      |          | 0.10*               | 0.33*                      |              | 0.35         |  |
|                         | (1.6)                     |          | (1.7)               | (1.7)                      |              | (1.6)        |  |
| Betw                    | -0.74***                  |          | $0.56^{***}$        | -1.89***                   |              | $1.59^{***}$ |  |
|                         | (-6.9)                    |          | (5.4)               | (-6.4)                     |              | (5.3)        |  |
| Size                    | 0.04                      |          | -0.02               | 0.11*                      |              | -0.04        |  |
|                         | (1.5)                     |          | (-1.4)              | (1.6)                      |              | (-0.7)       |  |
| K-shell index           |                           | 0.01***  | 0.01***             |                            | $0.02^{***}$ | $0.02^{***}$ |  |
|                         |                           | (47.6)   | (33.2)              |                            | (42.6)       | (32.1)       |  |
| Constant                | -0.04***                  | -0.05*** | -0.05***            | -0.11***                   | -0.14***     | -0.14***     |  |
|                         | (-21.6)                   | (-29.4)  | (-29.4)             | (-20.5)                    | (-27.7)      | (-27.9)      |  |
|                         |                           |          |                     |                            |              |              |  |
| Observations            | 56,782                    | 56,782   | 56,782              | 56,782                     | 56,782       | 56,782       |  |
| AIC                     | -35266                    | -39023   | -40119              | 3026                       | -443.9       | -1297        |  |
| BIC                     | -34532                    | -38334   | -39376              | 3760                       | 245.0        | -554.1       |  |
| ML (Cox-Snell) $R2$     | 0.268                     | 0.315    | 0.328               | 0.233                      | 0.278        | 0.289        |  |
| McKelvey-Zavoina's $R2$ | 0.328                     | 0.397    | 0.409               | 0.287                      | 0.355        | 0.365        |  |

| S<br>5<br>- 10    | >0000000000000000000000000000000000000 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X0K<br>X000K<br>X                          | ×<br>>#K<br>>#K<br>>#K | X<br>XK | ×<br>**<br>** |
|-------------------|----------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|---------|---------------|
| istic             |                                        |                      | *<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | >000000000K                                | >000                   | >00000C | >000C         |
| t-statistics<br>0 | 1%                                     | × Instruction        | X0K<br>X0000K<br>X0000K<br>X0000K<br>X0000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X000K<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X00X<br>X0 | ×<br>Xeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee | <b>X00</b> K           |         | ж<br>>шш      |
| <b>ب</b> –        | K-core                                 | X8K<br>X8K<br>X8806K | ×<br>NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VI                                         | ×<br>VO E              | setw S  | ×             |

# K-shell index versus size

- K-shell index is unweighted and undirected
- Consider the simple weighted K(a)-index, that consider only the a% largest edges
- Standard K = K(100)
- Calculate K(50)
  - Correlation K(50), K(100) = 0.85
  - In the regressions K(50) is clearly weaker than K(100)
  - But still far stronger than anything else
- More complex weighing schemes give same result

| - 10         | >000000000                              |               | K(50)                                   | regre      | ssions    |                                        |                                         |
|--------------|-----------------------------------------|---------------|-----------------------------------------|------------|-----------|----------------------------------------|-----------------------------------------|
|              | ×                                       |               |                                         | xoc        |           |                                        |                                         |
|              | ×                                       |               |                                         | x          |           |                                        |                                         |
|              | ×                                       |               |                                         | ~          |           |                                        |                                         |
|              | >0000                                   |               |                                         |            |           |                                        |                                         |
|              | >00000000                               |               |                                         |            |           |                                        |                                         |
|              | >0000(                                  |               |                                         | ×          | ×         |                                        | ××                                      |
|              | >00000000                               |               |                                         | x          |           |                                        |                                         |
|              | ×                                       |               | ×                                       | <b>XOC</b> |           |                                        | ×                                       |
|              | >00000000000000000000000000000000000000 |               | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |            |           |                                        | x                                       |
| – <u>ک</u>   | >0000000                                |               | 2000                                    |            |           |                                        | X                                       |
|              | >>>                                     |               | >0000000                                |            |           |                                        | X                                       |
|              | >00                                     |               | >00000                                  |            |           |                                        | XXX                                     |
|              | >0<                                     | ×             | >000000                                 | 2000       | >00000    |                                        | 2000                                    |
| S<br>S       | >><                                     | >>>>          | >0000000000                             | XXX        | >>>>      |                                        | >0000                                   |
| t-statistics |                                         | <u>xx</u>     | 20000                                   | 20000      | 200000    |                                        | 20000000                                |
| <u>.</u>     | >0<                                     | >0000         | >000000                                 | >00000000  | >0000     | X0K                                    | >000000                                 |
| at           |                                         | >000000       | >0000000                                | >000000000 | >000      | ×                                      | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
| ste          | 101                                     | >000000       | >0000                                   | >00000000  | >00000    | >00000000                              | >0000000                                |
|              | 1%                                      | <b>X0 X</b> X | >0000                                   | >00000000  | >000      | >00000(                                | >000000                                 |
|              |                                         | X0000000      | XODOX                                   | >0000000   | <b>XX</b> | >00000000                              | ×                                       |
| 0 -          |                                         |               | ×0                                      |            | >0000000  | >00000000                              | ×                                       |
|              |                                         | x0000000      |                                         |            |           | >000000000                             | xxxx                                    |
|              |                                         | >000000000000 | X                                       | 200000     | 2000,000  | 200 0 000                              |                                         |
|              |                                         | X0K           | ×                                       | >00000     | >00000    | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |                                         |
|              |                                         | >000000       |                                         | >0<        | >00000    | >000000000                             |                                         |
|              |                                         | >000          |                                         | ×          | >00000000 | >0000                                  | >00000                                  |
| Ī            |                                         |               |                                         |            | 2002      | 2002                                   | XXXX                                    |
|              |                                         |               |                                         | ×          |           | ×                                      | XX                                      |
|              |                                         |               |                                         | ×          | >000      | ×                                      | ×                                       |
|              |                                         |               |                                         |            | >000      |                                        | 2000                                    |
| 10           |                                         |               |                                         |            | ×         |                                        | ×                                       |
| <b>ب</b> _   |                                         |               |                                         |            | ×         |                                        |                                         |
|              |                                         |               |                                         |            |           |                                        | ~                                       |
|              |                                         |               |                                         |            |           |                                        | ×                                       |
|              |                                         |               |                                         |            |           |                                        |                                         |
|              | K-core                                  | NI            | NO                                      | VI         | VO E      | Betw :                                 | Size                                    |
|              |                                         |               |                                         | V I        |           |                                        |                                         |

# Policy implications

- Basel III capital conservation and countercyclical buffers, fully effective on 1 January 2019.
- Higher loss absorbency requirements for SIFI
- Basel SIFI: an indicator-based approach
  - size,
  - interconnectedness,
  - lack of readily available substitutes
  - Global (cross-jurisdictional) activity
  - complexity.
- it has been suggested that size is the main indicator of systemic importance.

# Our analysis challenges this wisdom

- Liquidity runs and preferential detachment are at the heart of banking panics
- By consequence a bank's position in the network (K-shell) may be more important for its "coreness" to the system than size
- Data on the biggest bilateral links may suffice to identify the SIFI (the K(50) results)
- It may be wise for the guardians of financial stability to invest in this

# Concluding remarks

- Liquidity hoarding
  - Is relevant to financial stability
  - though theoretical effects are poorly understood
- Supervisors who knows interbank market structure
  - can predict the stability of the interbank market
  - can identify SIFI who are too interconnected to fail
  - Can demand from them higher capital buffers
- The lender of last resort
  - Can solve the problem by timely and targeted injections,
  - As to keep upright the 'too central to fail' banks in the heat of the moment.